Question

In a reversible process the rate of heat transfer to the system by increase unit temperature...

In a reversible process the rate of heat transfer to the system by increase unit temperature is given by dQ / dT = 0.5kJ / ° C. Find the change in entropy of the system if its temperature increases from 500 to 800 K.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ideal gas ethylene undergoes a reversible adiabatic compression by which its temperature increases from T1 =...
Ideal gas ethylene undergoes a reversible adiabatic compression by which its temperature increases from T1 = 300 K to T2 = 450 K. The molar entropy in the initial state is given as s1 = 100 J K–1 mol–1, and here, for ethylene, cp = ?T + c0 with ? = 0.1 J K–2 mol–1 and c0 = 13.1 J K–1 mol–1. Determine the change of the molar entropy s2 – s1 and the change of the chemical potential ?2...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state...
In a cylinder/piston arrangement, air is compressed in a reversible polytropic process to a final state of 800 kPa, 500 K. Initially air is at 110 kPa and 25oC. During the compression process heat transfer takes place with the ambient maintained at 25oC. Assume air as an ideal gas (R =0.287 kJ/kg) and has constant specific heats of Cp = 1.004 kJ/kgK and Cv = 0.717 kJ/kgK. If the mass of air in the cylinder is 0.1286 kg, determine a)...
Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.1 = constant....
Nitrogen (N2) undergoes an internally reversible process from 6 bar, 247°C during which pν1.1 = constant. The initial volume is 0.1 m3 and the work for the process is 50 kJ. Assuming ideal gas behavior, and neglecting kinetic and potential energy effects, determine heat transfer, in kJ, and the entropy change, in kJ/K. Q = kJ ΔS = kJ/K
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from...
A mass of one kg of water within a piston–cylinder assembly undergoes a constant-pressure process from saturated vapor at 500 kPa to a temperature of 260°C. Kinetic and potential energy effects are negligible. For the water: a) Evaluate the work, in kJ, b) If the work is 30 kJ, evaluate the heat transfer, in kJ, c) If the heat transfer is negligible, evaluate the entropy production in kJ/K d) Determine if the process is reversible, irreversible, or impossible.
Termodinamik The container, which has a constant volume, has 2 kg of water as saturated steam...
Termodinamik The container, which has a constant volume, has 2 kg of water as saturated steam at 90⁰C. Heat transfer is carried out from the environment with a temperature of 700⁰C until the temperature of the water in the container reaches 500⁰C. Note: T (K) = 273 + ºC a) Find the entropy change of the system. b) Find the heat transfer to the container. c) Find the total entropy change.
Air is compressed by a 46-kW compressor from P1 to P2. The air temperature is maintained...
Air is compressed by a 46-kW compressor from P1 to P2. The air temperature is maintained constant at 25°C during this process as a result of heat transfer to the surrounding medium at 20°C. Determine the rate of entropy change of the air. The rate of entropy change of the air is  kW/K.
On a winter day, a certain house has heat transfer of 4.32  108 J to the outside....
On a winter day, a certain house has heat transfer of 4.32  108 J to the outside. What is the total change in entropy due to this heat transfer alone, assuming an average indoor temperature of 23.1°C and an average outdoor temperature of 5.65°C? J/K
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
Determine the increase in entropy of solid magnesium when the temperature is increased from 300K to...
Determine the increase in entropy of solid magnesium when the temperature is increased from 300K to 800K at atmospheric pressure. The heat capacity is given by the following relation: Cp = 26.04 + 5.586 * 10^(-3)T + 28.476 * 10(4)T^(-2). Where Cp is in J/mol K, and?S =  ?Cp (dT/T)
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.