Question

a vertical curve joining 2.5% and a -3.5% grades.the point of curve (pc) station is (235.2)ft...

a vertical curve joining 2.5% and a -3.5% grades.the point of curve (pc) station is (235.2)ft with an elevation of 170 ft assume k value for this highway is 280 determine the minimum length of the curve (L) determine the elevation of the point of intersection (pi) determine the station of the point of intersection (pi)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a sag vertical curve joining -3.5%and a 1.5% grades the point of curve PC station is...
a sag vertical curve joining -3.5%and a 1.5% grades the point of curve PC station is 188 ft with an elevation of 175 ft assume K value for this highway is 180 determine the minimum length of the curve L determine the station of the endpoint of the curve PT determine the elevation of the point of intersection PL
A 740 ft. long vertical curve is needed for a section of highway with an approaching...
A 740 ft. long vertical curve is needed for a section of highway with an approaching grade of -4.2% and a leaving grade of +1.6%. The station (in feet) of the Vertical Point of Intersection (VPI) is 16+70 and the elevation of the VPI is 609ft. The station of the beginning of the curve is closest to:
A vertical curve is joining -4% with -2% gradient, determine the minimum length of the curve...
A vertical curve is joining -4% with -2% gradient, determine the minimum length of the curve using all applicable criteria. Speed on the curve will be 60mph. Also, find out elevations of intermediate stations on the curve for layout. The PVI is at station 31+50 and elevation 101ft. (using K-values to find the curve length)
A crest vertical curve joining a +3 percent and a -4 percent grade is to be...
A crest vertical curve joining a +3 percent and a -4 percent grade is to be designed with a length of 2184 ft and the Station of BVC is ( 334 + 68) at an elevation of 217.24 ft. The distance from BVC at station (339 + :00) is
For a vertical curve with the following data: L = 425.00 ft.; g1= -2.50%; g2= +0.90%;...
For a vertical curve with the following data: L = 425.00 ft.; g1= -2.50%; g2= +0.90%; VPI sta = 28+50.00 ft.; VPI elev = 609.35 ft., determine the: a. (1 pt.) BVC station b. (1 pt.) EVC station c. (1 pt.) BVC elevation d. (1 pt.) EVC Elevation e. (3 pts.) Elevations on the curve at full stations f. (3 pts.) Elevations on the tangents at full stations g. (2 pts.) Tangent offsets at full stations h. (2 pts.) High/low...
A 1,800 ft. long sag vertical curve (equal tangent) has PVC at Station 145+10 and elevation...
A 1,800 ft. long sag vertical curve (equal tangent) has PVC at Station 145+10 and elevation 1,280 ft. The initial grade is -2.5% and final grade is +4.8%. Determine the elevation and stationing of PVI and PVT.
A vertical summit curve has tangent grades of +2.5% and -1.5% intersecting at station 12+460.12 at...
A vertical summit curve has tangent grades of +2.5% and -1.5% intersecting at station 12+460.12 at an elevation of 150m above sea level. If the length of the curve is 182m: a. Compute the length of the passing sight distance. b. Compute the stationing of the highest point of the curve. c. Compute the elevation of the highest point of the curve.
The PVI of a vertical curve is at station 110 + 00 and elevation 1100.00 ft....
The PVI of a vertical curve is at station 110 + 00 and elevation 1100.00 ft. The vertical curve is equal tangent, 600ft long, and connects an initial grade of +1.30% and a final grade of –1.10%. The vertical curve crosses a 3ft diameter pipe at right angles. The pipe is located at station 112 + 00 and its centerline is at elevation 1093.00 ft. a) Using offsets, determine the depth, below the surface of the curve, to the top...
A vertical curve has an incoming grade of +4.4% and an exit grade of -2.2%. The...
A vertical curve has an incoming grade of +4.4% and an exit grade of -2.2%. The length of the curve is 450.00 ft. The intersection of the grades is at 10+00 and the elevation at that point is 440.00. Compute the elevation of the +00 points on the curve. Then determine the location and elevation of the highest point on the curve. If there is an existing bridge at this location over the proposed road, and the elevation of its...
A horizontal curve on a three-lane highway with 12-ft lanes has a PC located at station...
A horizontal curve on a three-lane highway with 12-ft lanes has a PC located at station 10+00 and PT at station 13+70. The central angle is 25 degrees, the superelevation is 4%, and 40 ft of clearance is available between an obstruction and the centerline. Determine the maximum safe design speed to the nearest 5 mph.