Question

A simply supported reinforced concrete beam has a width (b) of 14 inches, and an effective...

A simply supported reinforced concrete beam has a width (b) of 14 inches, and an effective depth (d) of 24 inches. It is reinforced with 3 # 8 bars. Assume 60-ksi steel and 3000-psi concrete. Determine the resisting moment (Mr) in ft-k that this beam can safely sustain.

Problem 2

The beam given in Problem 1 has a span of 21 ft. It is supposed to carry a uniformly distributed service dead load of 3.7 k/ft, in addition to its own weight, and a service live load of 4.2 k/ft over the entire span. The concrete unit weight is 150 lb/ft3.

1.What is the maximum factored moment (Mu max) for this beam?

2.Should this beam be considered safe in bending?

Homework Answers

Answer #1

Complete solutionn is given below.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 1 A simply supported reinforced concrete beam has a width (b) of 14 inches, and...
Problem 1 A simply supported reinforced concrete beam has a width (b) of 14 inches, and an effective depth (d) of 24 inches. It is reinforced with 3 # 8 bars. Assume 60-ksi steel and 3000-psi concrete. Determine the resisting moment (Mr) in ft-k that this beam can safely sustain.
Problem 3 A reinforced concrete beam is cantilevered over a span of 10 ft. The beam...
Problem 3 A reinforced concrete beam is cantilevered over a span of 10 ft. The beam width is 14”. The beam is supposed to carry a uniformly distributed service dead load of 1.2 k/ft and a uniformly distributed service live load of 0.5 k/ft over its entire span. The dead load includes an allowance for the beam weight. Assume 60- ksi steel and 4,000-psi concrete. 1.Use the design equations to determine the minimum required effective depth (d). 2.Select the tensile...
A simply supported rectangular concrete beam is 18 in. wide and has an effective depth of...
A simply supported rectangular concrete beam is 18 in. wide and has an effective depth of 32 in. The beam supports a factored load (wu) of 15 kips/ft. on a clear span of 22 ft. The given load includes the weight of the beam. Use f'c = 4,000 psi. and fy = 60,000 psi. Over what length of span are stirrups required? Group of answer choices 8.35 ft. 9.18 ft. 10.26 ft. Stirrups are not required for this beam. None...
A simply supported rectangular concrete beam is 18 in. wide and has an effective depth of...
A simply supported rectangular concrete beam is 18 in. wide and has an effective depth of 32 in. The beam supports a factored load (wu) of 15 kips/ft. on a clear span of 22 ft. The given load includes the weight of the beam. Use f'c = 4,000 psi. and fy = 60,000 psi. What is the un-rounded stirrup spacing requirement at the critical section? Group of answer choices 3.23 in. 3.63 in. 4.04 in. 4.50 in. None of the...
While working with a concrete subcontractor, you were asked to redesign a concrete beam to use...
While working with a concrete subcontractor, you were asked to redesign a concrete beam to use No #8 reinforcing bars as the Sub has excess amounts of it. To do so, you need to determine the following: 1) The effective depth of the beam (d) 2) The total depth of the beam (h) 3) The area of tensile reinforcing required and then the number of #8 bars The service load bending moments on the beam are 62 kip-ft for dead...
Design a simply supported one-way reinforced concrete floor slab to span 12 ft and carry a...
Design a simply supported one-way reinforced concrete floor slab to span 12 ft and carry a service live load of 180 psf and a service dead load of 20 psf. Use fc’=3000 psi and fy=60,000 psi. Make the slab thickness to 1⁄2 inch increments. (Hint: Design the slab according to the ACI Code minimum thickness)
A rectangular, tension-reinforced beam is to be designed for dead load of 500 lb/ft plus self-weight...
A rectangular, tension-reinforced beam is to be designed for dead load of 500 lb/ft plus self-weight and service live load of 1200 lb/ft, with a 22 ft simple span. Material strengths will be fy = 60 ksi and fc・= 3 ksi for steel and concrete, respectively. The total beam depth must not exceed 16 in. Calculate the required beam width and tensile steel requirement, using a reinforcement ratio of 0.60 ρ0.005 . Use ACI load factors and strength reduction factors....
Problem 6 Design a 10-ft span steel wide-flange beam which that is required to support a...
Problem 6 Design a 10-ft span steel wide-flange beam which that is required to support a uniform service live load of 20 k/ft and a uniform service dead load of 17 k/ft. Assume the beam is 50-ksi. Does moment or shear govern?
Design a rectangular reinforced concrete beam for Mu = 550 k-ft (not including self-weight). Use f’c...
Design a rectangular reinforced concrete beam for Mu = 550 k-ft (not including self-weight). Use f’c = 4000 psi and fy = 60,000 psi. Use a design ρ = 0.01. Using the method of bd2, and choosing a width b no smaller than 15 inches and no larger than 18 inches, design a beam to resist the moment. Save room for #3 stirrups. Report your final design and draw the cross-section labeling all dimensions and showing the rebar layout and...
A rectangular RC beam is simply supported over a span of 8m and carries a dead...
A rectangular RC beam is simply supported over a span of 8m and carries a dead load of 15kN/m (including self-weight) and an imposed load of 8kN/m. The beam is 250mm wide and has an effective depth of 400mm. Grade 30 concrete is to be used. Determine if the beam should be singly reinforced or doubly reinforced.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT