Question

Design shear reinforcement for a singly reinforced beam of 250 mm wide and 450 mm effective...

Design shear reinforcement for a singly reinforced beam of 250 mm wide and 450 mm effective depth. The beam is reinforced with 4 no., 20 mm dia. bars on tension side. The factored shear force at critical section is 50 kN. Assume 8 mm diameter 2 legged vertical stirrups. Use M30 concrete and Fe415 steel

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rectangular beam of size 250 * 650 mm, with effective depth of 570 mm, is...
A rectangular beam of size 250 * 650 mm, with effective depth of 570 mm, is reinforced with 6- #19 steel bars in two rows. Stirrups of dia. 10 mm are used as shear reinforcement with concrete of Grade C-25 and steel of Grade 420 is to be used. Find the nominal moment capacity of the section.
A Reinforced beam of size 350 * 630 mm, with effective depth of 560 mm, having...
A Reinforced beam of size 350 * 630 mm, with effective depth of 560 mm, having concrete of Grade C-22 and steel of Grade 420 is to be used. Factored shear force at a distance of 1.0 m from the face of support is 400 KN. Concrete strength in shear is assumed as 150 KN. Find the maximum spacing of the stirrups if two legged stirrup of #13 is used.
The width of a rectangular beam is 250 mm and the effective depth is 317 mm....
The width of a rectangular beam is 250 mm and the effective depth is 317 mm. The tensile reinforcement is provided by 3 bars of 16 mm. Determine the moment of resistance of the section as per limit state method. Extracts of BS8110 grades: Concrete 25 KN Fcu =40 N/mm2 Fy=fyv=460 N/mm2
Knowing that the reinforced concrete beam cross section effective depth is d = 310 mm and...
Knowing that the reinforced concrete beam cross section effective depth is d = 310 mm and the properties of materials used are f'c = 28 MPa and fy = 420MPa and the external ultimate bending moment Mu = 254 KN.m with strain in tension steel reinforcement equal to 0.005 . The width of the beam is Select one : a . 511 b . 385 c . 460 mm d . 640
Calculate the total area of steel required in tension zone for a simply supported beam of...
Calculate the total area of steel required in tension zone for a simply supported beam of 230 mm wide, 406 mm effective depth. The total ultimate factored moment on the beam is 146.76 kN.m. Assume an effective cover for the compression reinforcement as 20 mm. Mu,lim of the section is 130.76 kN.m. Use M25 grade concrete and Fe415 steel. Check for spacing, shear and deflection is not required.
. A rectangular beam of size 300 * 600 mm is reinforced with steel bars of...
. A rectangular beam of size 300 * 600 mm is reinforced with steel bars of area 1530 mm^2. Concrete of Grade C-25 and steel of Grade 420 is to be used. Depth of neutral axis (y-dash) is found to be 312 mm. Find the stress at the bottom of the section, if applied bending moment is 45 KN-m.
A 24” wide rectangular beam is to be designed for shear. Assume f’ c =4000psi and...
A 24” wide rectangular beam is to be designed for shear. Assume f’ c =4000psi and f yt =40ksi. a. For a maximum factored shear load of 44k, select an effective depth so that no shear reinforcement is required. b. Using the beam dimensions calculated above, design the required shear reinforcement (bar size and spacing) if the maximum factored shear load is increased to 75k.
3. Calculate the load carrying capacity and percentage of reinforcement for a short rectangular column of...
3. Calculate the load carrying capacity and percentage of reinforcement for a short rectangular column of cross section dimension 280 mm x 500 mm is reinforced with 4 bars of 25 mm diameter, 2 bars of 20 mm diameter and 2 bars of 12 mm diameter. Use M30 grade concrete and Fe 500 grade steel. Also design a 4 legged ties necessary for this section.
Determine the cracking stress of concrete in a reinforced beam of rectangular section of breadth 250mm,...
Determine the cracking stress of concrete in a reinforced beam of rectangular section of breadth 250mm, gross depth 450mm, and effective cover to reinforcement 40mm. the beam contains 4N16 bars all arranged in one layer in tension face. Take the concrete is N32 grade.
The stirrups of the cantilever beam are spaced 100 mm apart. The beam’s dimensions are 250...
The stirrups of the cantilever beam are spaced 100 mm apart. The beam’s dimensions are 250 mm x 415 mm and is reinforced by 2 – 20 mm ∅ tension bars. Neglecting the weight of concrete, determine the allowable load P applied at the free end. Use fs = 140 Mpa, fv = 70 Mpa, ?? = 0.80 ???,????? ?? = 1.40 ???,??? ? = 7 8 . Allow 65 mm distance from centroid of steel bars to extreme fibers....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT