Question

The initial value problem y''' - y" + y' - y = 0, y(0) = 1,...

The initial value problem
y''' - y" + y' - y = 0, y(0) = 1, y'(0) = -1, y''(0) = 3

is given. If the Laplace transform of y(t) is Y(s), first find Y(s). Then using Y(s) find the solution of the given initial value problem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use...
Use the Laplace transform to solve the following initial value problem y”+4y=cos(8t) y(0)=0, y’(0)=0 First, use Y for the Laplace transform of y(t) find the equation you get by taking the Laplace transform of the differential equation and solving for Y: Y(s)=? Find the partial fraction decomposition of Y(t) and its inverse Laplace transform to find the solution of the IVP: y(t)=?
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. y′′+9y={t, 0≤t<1...
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. y′′+9y={t, 0≤t<1 1, 1≤t<∞, y(0)=3, y′(0)=4 Enclose numerators and denominators in parentheses. For example, (a−b)/(1+n). Y(s)=
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. A. y′′+16y...
Find the Laplace transform Y(s)=L{y} of the solution of the given initial value problem. A. y′′+16y = {1, 0 ≤ t < π = {0, π ≤ t < ∞, y(0)=3, y′(0)=5 B. y′′ + 4y = { t, 0 ≤ t < 1 = {1, 1 ≤ t < ∞, y(0)=3, y′(0)=3
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y...
Use the Laplace transform to solve the following initial value problem: y′′ + 8y ′+ 16y = 0 y(0) = −3 , y′(0) = −3 First, using Y for the Laplace transform of y(t)y, i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation __________________________ = 0 Now solve for Y(s) = ______________________________ and write the above answer in its partial fraction decomposition, Y(s) = A / (s+a) + B / ((s+a)^2) Y(s) =...
transform the given initial value problem into an algebraic equation for Y = L{y} in the...
transform the given initial value problem into an algebraic equation for Y = L{y} in the s-domain. Then find the Laplace transform of the solution of the initial value problem. y'' + 4y = 3e^(−2t) * sin 2t, y(0) = 2, y′(0) = −1
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform...
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform of y(t), i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation and solve for Y(s)=
Given the second order initial value problem y′′+25y=5δ(t−1),  y(0)=2,  y′(0)=−10y″+25y=5δ(t−1),  y(0)=2,  y′(0)=−10Let Y(s)Y(s) denote the Laplace transform of yy. Then...
Given the second order initial value problem y′′+25y=5δ(t−1),  y(0)=2,  y′(0)=−10y″+25y=5δ(t−1),  y(0)=2,  y′(0)=−10Let Y(s)Y(s) denote the Laplace transform of yy. Then Y(s)=Y(s)=  . Taking the inverse Laplace transform we obtain y(t)=
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then...
Given the second order initial value problem y′′+y′−6y=5δ(t−2),  y(0)=−5,  y′(0)=5 Y(s) denote the Laplace transform of y. Then Y(s)= Taking the inverse Laplace transform we obtain y(t)= y(t)=
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2)...
Solve the initial-value problem. y"-6y'+9y=0; y(0)=2, y'(0)=3 Given that y1=x2 is a solution to y"+(1/x) y'-(4/x2) y=0, find a second, linearly independent solution y2. Find the Laplace transform. L{t2 * tet} Thanks for solving!
transform the given initial value problem into an algebraic equation for Y=L{y}Y=L{y} in the ss-domain. Then...
transform the given initial value problem into an algebraic equation for Y=L{y}Y=L{y} in the ss-domain. Then find the Laplace transform of the solution of the initial value problem. y′′+2y′−2y=0 y(0)=2, y′(0)=1
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT