Question

The velocity of a particle is v = { 5 i + ( 6 – 2t...

The velocity of a particle is v = { 5 i + ( 6 – 2t ) j } m/sec , where ‘ t ‘ is in secs. r = 0, When t = 0 , determine the displacement of the particle during the time interval t = 1 secs to t = 3secs .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1-The velocity of a particle is v = { 6 i + ( 28 - 2...
1-The velocity of a particle is v = { 6 i + ( 28 - 2 t ) j } m/s, where t is in seconds. If r=0 when t=0, determine particle displacement during time interval t = 3 s to t = 8 s in the y direction. 2-A particle, originally at rest and located at point (1 ft, 4 ft, 5 ft), is subjected to an acceleration of a={ 3 t i + 17 t2k} ft/s. Determine magnitude...
The velocity function (in meters per second) is given for a particle moving along a line....
The velocity function (in meters per second) is given for a particle moving along a line. v(t) = t2 − 2t − 8,    1 ≤ t ≤ 5 (a) Find the displacement. (m) (b) Find the distance traveled by the particle during the given time interval. (m)
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
) The velocity function v(t) = −2t + 6, on the interval [1,5] is given for...
) The velocity function v(t) = −2t + 6, on the interval [1,5] is given for a particle moving along a line. Find the distance traveled
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position...
please ASAP!! Suppose that a particle has the following acceleration vector and initial velocity and position vectors. a(t)  =  5 i  +  9t k,    v(0)  =  3 i  −  j,    r(0)  =  j  +  6 k (a) Find the velocity of the particle at time t. (b) Find the position of the particle at time t.
The velocity v of a particle moving in the xy plane is given by v =...
The velocity v of a particle moving in the xy plane is given by v = (7.0t -4.0t2 )i + 7.5j, in m/s. Here v is in m/s and t (for positive time) is in s. What is the acceleration when t = 3.0 s? i-component of acceleration? j-component of acceleration? When (if ever) is the acceleration zero (enter time in s or 'never')? When (if ever) is the velocity zero (enter time in s or 'never')?
Consider a particle moving through space with velocity v(t) = cos(t)i−sin(t)j + tk. (i) (3 marks)...
Consider a particle moving through space with velocity v(t) = cos(t)i−sin(t)j + tk. (i) Determine its acceleration vector. (ii) Determine the position vector, supposing the particle starts at position (3,−2,3) at time t = 0.
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity...
A moving particle starts at an initial position r(0) = <1, 0, 0> with initial velocity v(0) = i - j + k. Its acceleration is a(t) = 4t i + 4t j + k. Find its velocity, v(t), and position, r(t), at time t.
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT