Question

In a closed container, one gram of water (1 cm3) is boiled under constant pressure of...

In a closed container, one gram of water (1 cm3) is boiled under constant pressure of 1 atm (1.013 × 105 Pa) until it changes into steam.

The heat of vaporization at this pressure is Lv = 2.256 × 106 J/kg = 2256 J/g.

Assume that water vapor behaves like an ideal gas. The temperature of the steam is 373 K, number of moles of water vapor n = 0.0546 (g mol), the ideal gas constant R = 82.057 (cm3·atm/g mol·K).

(a) How much volume (in cm3) of steam is produced?

(b) How much work is done by the water when it vaporizes?

(c) How much has the internal energy increased?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4.7 cm3 of water is boiled at atmospheric pressure to become 4063.2 cm3 of steam, also...
4.7 cm3 of water is boiled at atmospheric pressure to become 4063.2 cm3 of steam, also at atmospheric pressure. 1. Calculate the work done by the gas during this process. The latent heat of vaporization of water is 2.26 × 106 J/kg . Answer in units of J. 2. Find the amount of heat added to the water to accomplish this process. Answer in units of J. 3. Find the change in internal energy. Answer in units of J.
A 2.0 L-closed container at 300 K holds 100 cm3 of H2O(l). The equilibrium vapor pressure...
A 2.0 L-closed container at 300 K holds 100 cm3 of H2O(l). The equilibrium vapor pressure is found to be 0.0328 atm. What pressure of Ar gas must be placed in the container to double the equilibrium water vapor pressure to 0.0656 atm?
A 150 gram copper bowl (Ccopper = 386 J/kgC) contains 220 grams of water (Cwater =...
A 150 gram copper bowl (Ccopper = 386 J/kgC) contains 220 grams of water (Cwater = 4190 J/Kgc) and both are at 20.0 degrees celsius. A hot 300 gram copper cylinder is dropped into the water, which causes the water to boil and 5.00 grams of water is in turn converted into steam (Lv = 2256 Kj/kg). The final temperature of the system is 100 degrees Celsius. 1. How much heat was transferred to the water? 2. how much heat...
A 1 liter solution of diluted liquid chloroform with toluene is in a sealed container. The...
A 1 liter solution of diluted liquid chloroform with toluene is in a sealed container. The mole fraction of chloroform in the gas phase was measured at 1500 ppmv once the solution was prepared. The molecular weight is 119.35 g/mol for chloroform and 92.13 g/mol for toluene. The vapor pressure of chloroform and toluene are 151 mmHg and 28.1 mmHg, respectively. What must the volume of liquid chloroform be in order to make a 1.0 liter total volume solution? What...
The vaporization of 1 mole of liquid water (the system) at 100.9 degrees C, 1.00 atm,...
The vaporization of 1 mole of liquid water (the system) at 100.9 degrees C, 1.00 atm, is endothermic. H2O(l) + 40.7kJ ---> H2O (g) Assume at exactly 100.0 degrees C and 1.00 atm total pressure, 1.00 mole of liquid water and 1.00 mole of water vapor occupy 18.80 mL and 30.62 L, respectively. 1. Calculate the work done on or by the system when 3.65 mol of liquid H2O vaporizes. Answer in J 2. Calculate the water's change in internal...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from...
8.33 kg of steam at temperature of 150 ∘C has 2.23×107 J of heat removed from it. Determine the final temperature and phase of the result once the heat has been removed if the heat is removed at constant pressure during the gas phase. For this problem, use the specific heat (at constant pressure) for water as 1850 J/kg∘C , the latent heat of vaporization as 2.256×106 J/kg , the specific heat of liquid water as 4186 J/kg∘C , the...
Let's say you completely boil 3.96 kg of rubbing alcohol at constant air pressure 99.7 kPa....
Let's say you completely boil 3.96 kg of rubbing alcohol at constant air pressure 99.7 kPa. What will be the resulting volume of vapor, in m3, assuming it behaves like an ideal gas? (Possibly useful: density of rubbing alcohol: 0.786 kg/liter, molar mass of rubbing alcohol: 60.1 kg/kmol, gas constant R = 8.314 kJ K−1 kmol−1. Beware K vs °C, Pa vs kPa, g vs kg, mol vs kmol, etc.)
At 0,00℃, for H2O (l) the saturation pressure P = 4,581 dry
At 0,00℃, for H2O (l) the saturation pressure P = 4,581 dry (i.e., the water vapor equilibrium pressure) and the vaporization heat, ?vapHm = 45,067 kJ mol-1. The steam can be regarded as an ideal gas. a) Calculate water pressure at 100,00?C with the assumption that ?vapHm is a constant between 0,00 and 100,00℃. b) Between 0,00 and 100,00℃, ?Cp,m for water evaporation can be adapted to the expression ?Cp,m = (-51,22 + 0,03153T) J K-1 mol-1. Derive an expression between 0,00 and 100,00?C for ?vapHm as a function of T as well as calculate P at 100?C.
A cylinder of volume 0.280 m3 contains 10.9 mol of neon gas at 20.8°C. Assume neon...
A cylinder of volume 0.280 m3 contains 10.9 mol of neon gas at 20.8°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A cylinder of indefinite height contains a frictionless and massless piston. The part of the cylinder...
A cylinder of indefinite height contains a frictionless and massless piston. The part of the cylinder above the piston is exposed to the atmosphere with P=1.000 atm. In the bottom of the cylinder are 5.000 kmoles of a liquid that has a boiling point equal to 320.0 K at P=1.000 atm., a heat of vaporization of 2.520 X 107J/kmole, and cp = a+bT-1  for the liquid phase, where a=3.000x104 J/kmole/K and b=2.500x104J/kmole. A. At constant pressure, how much heat is required...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT