Question

Find critical depth of a 2 m wide rectangular channel if the flow rate passing through...

Find critical depth of a 2 m wide rectangular channel if the flow rate passing through it is 3 m3/s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
During a flood flow, the depth of flow in a 10 m wide rectangular channel at...
During a flood flow, the depth of flow in a 10 m wide rectangular channel at 2 sections 200 m apart was found to be 3.0 m and 2.9 m. respectively. The drop in the water surface elevation was found to be 0.12 m. Estimate the flood discharge through the channel. Assume n = 0.025.
The flow in a very wide rectangular channel tends to a freefall at which the depth...
The flow in a very wide rectangular channel tends to a freefall at which the depth is reduced to 0.67 times the normal depth. The channel conveys a specific discharge of 4 m3/s/m and has a bed slope of 10 cm/km. Estimate the distance upstream of the fall where the water depth is 0.9 times the normal depth. Take the Manning coefficient as 0.025 and use the step-by-step (direct step) method.
The discharge through a rectangular channel 4.4 m wide is 16 m3/s. The Manning’s coefficient n...
The discharge through a rectangular channel 4.4 m wide is 16 m3/s. The Manning’s coefficient n is 0.003. Determine the normal depth when the slope is 0.008. Check whether the flow is sub or supercritical. If the normal depth is to be kept at 2 m, determine the slope.
1) Determine the critical depth, critical slope and Froude Number at section y=0.4 m in a...
1) Determine the critical depth, critical slope and Froude Number at section y=0.4 m in a 1 m wide rectangular channel carrying 1.5 m3 /s. n=0.014. 2) Design a circular channel to convey Q=4 m3 /sec, in order to have maximum velocity. n=0.014, S0=0.008.. 3) Design a circular channel to convey flow rate Q=3 m3/sec, in order to have the flow depth y=1.5, n =0.014, bed slope 0.0006.
Water flows in a 4-m wide rectangular open channel that has an n = 0.022, a...
Water flows in a 4-m wide rectangular open channel that has an n = 0.022, a slope of 0.005 m/m, and the flow rate is 10 m3/s.   A flow depth of 0.92 m is located at a particular location in the channel. What type of flow profile occurs at that location? Given the roughness value, what is the likely channel material?    (Water surface profile classification problem) Hydraulic Engineering
Determine the depth (y), and the pressure (p) for a rectangular channel that has a discharge,...
Determine the depth (y), and the pressure (p) for a rectangular channel that has a discharge, Q=300 m3/s, (uniform flow) (n= 0.014 Manning) Slope=0.65 b(wide)=2.00 m
A 5-m wide rectangular channel with two reaches, each with a different slope, conveys 40m3/s of...
A 5-m wide rectangular channel with two reaches, each with a different slope, conveys 40m3/s of water. The channel slope for the first reach is 0.0005 and then a sudden change to a slope of 0.015 so that critical flow occurs at the transition. Determine the depths of flow at locations 10 m, 20 m and 30 m upstream of the critical depth. The Manning’s n for the channel is 0.015.
Water is flowing through a rectangular channel. The velocity is .5m/s and the depth 1.4m. A...
Water is flowing through a rectangular channel. The velocity is .5m/s and the depth 1.4m. A smooth rise occurs of .6m (B) in the channel bed. Is the flow subcritical or supercritical? Estimate the depth of flow after the rise.
A rectangular channel 6.20 m wide and 1.20 m deep is laid on a uniform slope...
A rectangular channel 6.20 m wide and 1.20 m deep is laid on a uniform slope of 0.003. The roughness coefficient of the channel is 0.013 m. a. Determine the discharge in the channel in m3/sec. b. Determine the savings in the lining per meter length of channel if the most efficient rectangular section is to be used for the same flow and properties. c. Determine the savings in earth excavation per meter length of channel if the most efficient...
A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce...
A vertical sluice gate in a long rectangular channel 5 m wide is lowered to produce an opening of 1.0 m. Assuming that free flow conditions exist at the vena contracta downstream of the gate verify that the flow in the vena contracta is supercritical when the discharge is 15 m3/s, and determine the depth just upstream of the gate. Cv = 0.98; Cc = 0.6. Take the upstream velocity energy coefficient (Coriolis) to be 1.0 and that at the...