Question

A retaining wall is shown in Figure 4. Given that; H = 9m, H1 = 4,...

A retaining wall is shown in Figure 4. Given that; H = 9m, H1 = 4, ƴ1 = 16.5KN/m3, ƴ2 = 20.2 KN/m3, Ø’1 = 30, Ø’2 = 34 and q = 21KN/m2. Determine the Rankine active force, Pa, per unit length of the wall and the location of the resultant.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6-m-high retaining wall is to support a soil with unit weight 17.4 kN/m3, soil Friction...
A 6-m-high retaining wall is to support a soil with unit weight 17.4 kN/m3, soil Friction angle 26°, and cohesion c14.36 kN/m2. Determine the Rankine active force per unit length of the wall both before and after the tensile crack occurs, and determine the line of action of the resultant in both cases
For the 8m high retaining wall, the top layer is sand with internal friction angle Ø=25°...
For the 8m high retaining wall, the top layer is sand with internal friction angle Ø=25° and unit weight is 18.2 kN/m3 and the bottom layer is gravel with internal friction angle Ø=33° and unit weight is 21.8 kN/m3 . There is no cohesion in both of the soil layers. Calculate the thrust per meter length of the wall Pa and draw the lateral earth pressure diagram.
) A reinforced earth retaining wall is to be 30 ft high (H=30 ft). - Backfill:...
) A reinforced earth retaining wall is to be 30 ft high (H=30 ft). - Backfill: unit weight 110 pcf, internal friction angle 33° - Metal strip reinforcement: vertical spacing 3 ft, horizontal spacing 4 ft, width of reinforcement 5”, yield stress of reinforcement 35,000 psi, friction angle between the soil and reinforcement is 24°, FS pullout failure = 2, FS tensile failure =2 - Assume ??′ = 2 3??′ - Corrosion rate: 0.0006 in/year for the 1st 2 year...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at point A and ending at point B. The total time from A to B is 1.50 min. How much work did gravity do on the rock between A and B? A) 625 J B) 20.0 J C) 275 J D) 75 J E) 0 J 22) A person carries a 2.00-N pebble through the path shown in the figure, starting at point A and...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT