Question

Normal forces and friction forces acting on bodies as they roll without slipping over a rough...

Normal forces and friction forces acting on bodies as they roll without slipping over a rough surface do work since there is a displacement

True

False

Internal forces do work because they always act in equal and opposite pairs

True

False

The elastic potential energy is always positive.

True

False

Homework Answers

Answer #1

1) FALSE

Because for bodies as they roll without slipping there is no instantaneous displacement of the point in contant to ground surface.so the work done by the force on point is ZERO.

THEREFORE, the forces do no work due to zero displacement.

2) FALSE

INTERNAL FORCES DO NO WORK because as they always act in equal and opposite pairs the sum of work done is ZERO. hence there is no work done

3) FALSE

it it need not to be positive or negative.

Elastic potential energy is defined as the engergy that is stored by the work done to compress or strech the spring.

it is defined as the negetive of work done by the spring(compress or strech)

so, it may not be always positive

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
17. Action-reaction forces in third Newton’s law: a. Always act on the same object. b. Sometimes...
17. Action-reaction forces in third Newton’s law: a. Always act on the same object. b. Sometimes act of the same object. c. Always act on different objects. d. May or may not be antiparallel to each other. 18. If force exerted by horse on a cart is equal and opposite to the force exerted by cart on a horse, how does horse manage to move a cart? a. Horse has bigger mass than a cart. b. Horse still exerts greater...
Learning Goal: To understand how to apply the law of conservation of energy to situations with...
Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy K and potential energy U. For such...
A uniform solid marble, of mass m = 20.0 g and diameter 1.00 cm, rolls without...
A uniform solid marble, of mass m = 20.0 g and diameter 1.00 cm, rolls without sliding down a large symmetric steel bowl, starting from rest at point A, at the top of the left(no-slip) side. The top of each side is a distance h = 15.0 cm above the bottom of the bowl. The left half of the bowl is rough enough to cause the marble to roll without slipping, but the right half of the bowl is frictionless...
Two boxes are stacked, with box B placed on top of box A. If box A...
Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move with a decreasing speed, is there any friction on either box? (a) Kinetic friction on box A and no friction on box B (b) Kinetic friction on box A and static friction on box B (c) Kinetic friction on box A and kinetic friction on box B (d) Static friction on box A and kinetic friction on...
Question 1 (1 point) Which is not necessary in order to do work on an object...
Question 1 (1 point) Which is not necessary in order to do work on an object (use the scientific definition of work)? Question 1 options: There must be a change in momentum. A net force must be applied to the object. The object must undergo a displacement. A component of the force must be in the direction of motion. Question 2 (1 point) The change in gravitational potential energy for a 1.9 kg box lifted 2.2 m is: Question 2...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked...
just do questions 5 through 10 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in...
8 through 10 done please!! 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill is...
answer all questions 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking...
answer all questions 3.13.6 Question 110 pts A 319 kg motorcycle is parked in a parking garage. If the car has 35,494 J of potential energy, how many meters above ground is the car? Report your answer to 1 decimal place. Please do not include units or the answer will be marked incorrect. Flag this Question Question 210 pts A box sitting on the top of a hill has 252 J of potential energy. If the hill is 279 meters...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a ball falls freely toward the ground, its total mechanical energy Group of answer choices increases remains the same not enough information decreases Flag this Question Question 2 20 pts A child jumps off a wall from an initial height of 16.4 m and lands on a trampoline. Before the child springs back up into the air the trampoline compresses 1.8 meters. The spring constant...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...