Question

When 1.04g of cyclopropane was burnt in excess oxygen in a calorimeter, the temperature of the...

When 1.04g of cyclopropane was burnt in excess oxygen in a calorimeter, the temperature of the calorimeter rose by 3.69 K. The combined heat capacity of the calorimeter and its contents was 14.01 kJ K-1. Determine the molar enthalpy of combustion of cyclopropane.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by...
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by 1.35K. Given that the standard molar enthalpy of combustion of anthracene at 298K is -7061 kJ/mol, calculate the heat capacity of the calorimeter.
At constant volume, the heat of combustion of a particular compound is –3146.0 kJ/mol. When 1.159...
At constant volume, the heat of combustion of a particular compound is –3146.0 kJ/mol. When 1.159 g of this compound (molar mass = 157.13 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.565 °C. What is the heat capacity (calorimeter constant) of the calorimeter?
A sample of 0.100 g of propane is burned with excess oxygen with a calibrated calorimeter...
A sample of 0.100 g of propane is burned with excess oxygen with a calibrated calorimeter constant pressure, whose calorific capacity is 520 J. ° C-1. This experience calorimeter temperature has risen 9.62 ° C. Using the data presented, the enthalpy of combustion propane kJ.mol-1 is approximately: Data: molar mass (g mol-1): M 1 = C = 12 (please explain your answer) (A) -220. (B) -800. (C) -1500. (D) -2200. (E) -5000.
1. 3.000 grams of Ca is burned in a bomb calorimeter. The water’s temperature rose from...
1. 3.000 grams of Ca is burned in a bomb calorimeter. The water’s temperature rose from 20.0 degrees centigrade to 21.79 degrees centigrade. The heat capacity of the calorimeter is 26.60 kJ/C. What is the enthalpy change for this reaction as written. The thermochemical equation is: 2Ca (s) + O2 (g) —> 2CaO (s) 2. 1.30 grams of C7H6O2 is combusted in a bomb calorimeter. The water’s temperature rose from 20.00 degrees centigrade to 21.58 degrees centigrade. The heat capacity...
A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and...
A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and ignited in the presence of excess oxygen. The temperature was observed to rise by 0.910 K. In a separate experiment, 0.825 g of benzoic acid (C6H5CO2H) is similarly ignited in the same calorimeter, and is observed to cause an increase of the temperature of 1.940 K. The internal energy of combustion of benzoic acid is -3251 kJ mol-1. (a) Calculate the heat capacity of...
1. At constant volume, the heat of combustion of a particular compound, compound A, is –3409.0...
1. At constant volume, the heat of combustion of a particular compound, compound A, is –3409.0 kJ/mol. When 1.277 g of compound A (molar mass = 117.77 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.891 °C. Using this data, what is the heat capacity (calorimeter constant) of the calorimeter? 2. Suppose a 3.107 g sample of a second compound, compound B, was combusted in the same calorimeter, and the temperature...
The enthalpy of combustion ΔcH° of gaseous cyclopropane, C3H6, is -2091 kJ mol-1 at 25 °C....
The enthalpy of combustion ΔcH° of gaseous cyclopropane, C3H6, is -2091 kJ mol-1 at 25 °C. a. What is the standard enthalpy of formation of cyclopropane? b. What is the standard internal energy change of combustion of cyclopropane at 25 °C. c. Using heat capacity values in the back of your book, what is the standard enthalpy of combustion of cyclopropane at 100 °C? d. Again using heat capacity values in the back of your book, what is the standard...
When 0.5141 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from...
When 0.5141 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.823 °C to 29.419 °C. Find ΔrU and ΔrH for the combustion of biphenyl in kJ mol−1 at 298 K. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.861 kJ °C−1.
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of...
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of oxygen to CO2(g) and H2O() in a constant-volume calorimeter at 25.00 °C. The temperature rise is observed to be 2.150 °C. The heat capacity of the calorimeter and its contents is known to be 9.455×103 J K-1. (a) Write and balance the chemical equation for the combustion reaction. Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or...
The combustion of 1.961 g of sucrose, C12H22O11(s), in a bomb calorimeter with a heat capacity...
The combustion of 1.961 g of sucrose, C12H22O11(s), in a bomb calorimeter with a heat capacity of 4.00 kJ/°C results in an increase in the temperature of the calorimeter and its contents from 22.92 °C to 31.00 °C. Calculate the enthalpy of combustion, Δ?c, for sucrose in kilojoules per mole. Δ?c= kJ/mol What is the internal energy change, Δ?, for the combustion of 1.961 g of sucrose in the bomb calorimeter? Δ?= kJ