Question

In answering this set of nine questions, you are encouraged to draw a PV diagram, with...

In answering this set of nine questions, you are encouraged to draw a PV diagram, with P (pressure) on the y axis and V (volume) on the x axis. Plot the three points A, B, and C on this diagram.

1. Consider 10.0 liters of an ideal (monatomic) gas at a pressure of 33.0 atm and a temperature of 326 K. Call this state of the system A. Using the ideal gas law, calculate the number of moles of gas present in the system.

Number of moles, n =  

2. The temperature of the system is reduced, keeping the volume constant at 10.0 liters, until the pressure in the system equals 13.0. Call this state of the system B. Calculate the temperature at this new state B in degrees K.

Temperature at state B =  

3. Now the gas is allowed to expand at constant pressure (13.0 atm) until the temperature is again equal to 326 K. Call this state of the system C. Calculate the volume of the gas at state C.

Volume at state C =  

4. Now calculate the work done on or by the system when the system moves back from state C to state A along the path CBA. Enter your answer in joules with the correct sign.

Work along the path CBA, w =  

5. Calculate the heat absorbed or liberated by the system when the system moves from state C to state B. Note that the molar heat capacity of an ideal gas under constant pressure is (5/2)R. Enter your answer in joules with the correct sign.

Heat along the path C to B, q =  

6. Using your results from the previous two questions, calculate the heat absorbed or liberated by the system as it moves from state B to state A. Enter your answer in joules with the correct sign.

Heat along the path B to A, q =  

7. What is the change in the internal energy of the system as the system travels down the isotherm from state A to state C?

Change in internal energy down the isotherm =  

8. How much work is done by the system as the system travels down the isotherm from state A to state C? Enter your answer in joules with the correct sign.

Work down the isotherm, w =  

9. How much heat must be absorbed or liberated by the system as it moves down the isotherm from A to C? Enter your answer in joules with the correct sign.

Heat down the isotherm, q =  

I got until number 3. I got 13.88 for #1, 175.51K for #2 and 20L for #3. May I ask for a help for rest of the problems?

Homework Answers

Answer #1

1. moles, n=13.88

2. temp at B= 175.51 K

3. Volume at C= 20L

4. At A, P=33.0 atm, V=10 L, T=326 K

At B, P=13.0 atm, V=10 L, T=175.51 K

At C, P=13.0 atm, V=20 L, T=326 K

From C-B, w= P*(Vf-Vi)= (13 atm*101325 Pa/atm)*10= 1.31*10^7 J

From B-A, w= V*(P1-P2)= 10*(20atm*101325 Pa/atm)= 2.02*10^7 J

Total work from Cto B= 1.31*10^7+ 2.02*10^7= 3.33*10^7 J

5. Heat Cto B, q=mc(T2-T1)

Assuming the density to be 1

q=(20-10)*5/2*8.314(326-175.51)= 10*5/2*8.314*150.49

q= 31279.35 J

6. Heat from B to A, w= -P*delta V= -13(10-10)= 0 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7.   (15 pts.) A cylinder contains 4 mol of an ideal gas at 30oC. If it...
7.   (15 pts.) A cylinder contains 4 mol of an ideal gas at 30oC. If it expands from an initial volume of 1.0 m3 to 2.0 m3 while maintained at a constant pressure of 200 kPa (a)   What is the change in the temperature of the gas? (b)   How much heat is absorbed or released from the system, over the process? The pressure is then reduced while the gas is held at a constant volume. (c)   If over this process...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature...
You are given an ideal monatomic gas of N = 1.00 × 1023 atoms at temperature T = 300K, and volumeV = 20 L. Find: (a) The pressure in the gas in Pa. (b) The work done in Joules when the gas is compressed slowly and isothermally to half its volume. (c) The change in internal energy of the gas in Joules during process (b). (d) The heat (in J) absorbed or given up by the gas during process (b)....
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston compresses a gas isothermally from a height of 15.0 cm to 2.50 cm at a constant pressure of 2.0 atm. a) How much heat was added to the gas? b) Now if 7000 J of heat is added to the system and the piston is only moves 5.0 cm up, what is the change in the internal energy of the system is the pressure...
In the initial state, an ideal gas has pressure p1, volume V1 and temperature T1. Now...
In the initial state, an ideal gas has pressure p1, volume V1 and temperature T1. Now the gas changes its state by effecting a state change so that it reaches the pressure p2, the volume V2 and the temperature T2 in the new state. The pressure doubles during this state change, which is an isochore process. a) Find the work W performed during the isochore process. b) The heat Q is exchanged between the gas and the surroundings during the...
Consider a transformation from point A to B in a two-step process. First, the pressure is...
Consider a transformation from point A to B in a two-step process. First, the pressure is lowered from 15 MPa at point A to a pressure of 3 MPa, while keeping the volume at 2.3 L by cooling the system. The state reached is labeled C. Then the system is heated at a constant pressure to reach a volume of 6.0 L in the state B. (Assume the system consists of a monatomic ideal gas.) need part B Part B)...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R...
28 moles of an ideal gas with a molar specific heat at constant volume of cv=3.2R is initially in state "A" at pressure 73390 Pa and volume 1.0 m3. The gas then expands isobarically to state "B" which has volume 2.6?3m3. The gas then cools isochorically to state "C". The gas finally returns from state "C" to "A" via an isothermal process. What is the adiabatic constant γ for this gas? What is Q during the expansion from "A" to...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
30) a)how much heat is released(in kJ) when 100.0 g H2O(l) is formed from the combustion...
30) a)how much heat is released(in kJ) when 100.0 g H2O(l) is formed from the combustion of H2(g) and O2(g) 2H2(g) + 2O2(g) →2H2O(l) ∆H°=-571.6 kJ. b) in an exothermic reaction? a) heat is absorbed from the surroundings b) temperature is constant c) pressure increases d) heat is transferred to the surroundings c) which of the following does not require a heat transfer into the system? a)bond formation b) vaporization c) sublimation d) all require heat in D) doubling the...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from state a to state b. As shown in the diagram, Pa = Pb = 600 Pa, Va = 3.0 m3, and Vb = 9.0 m3. The pressure is then reduced to 200 Pa without changing the volume, as the gas is taken from state b to state c. c. Determine Q for the process bc. d. Determine the change in thermal energy of the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT