Question

1. For a certain reaction, Kc = 4.70×10−2 and kf= 95.6 M−2⋅s−1 . Calculate the value...

1. For a certain reaction, Kc = 4.70×10−2 and kf= 95.6 M−2⋅s−1 . Calculate the value of the reverse rate constant, kr, given that the reverse reaction is of the same molecularity as the forward reaction.

Express your answer with the appropriate units. Include explicit multiplication within units, for example, to enter M−2⋅s−1 include ⋅ (multiplication dot) between each measurement

2. For a different reaction, Kc = 1.51×105, kf=8.12×103s−1 , and kr= 5.39×10−2 s−1 . Adding a catalyst increases the forward rate constant to 5.77×105 s−1 . What is the new value of the reverse reaction constant, kr, after adding catalyst?

Homework Answers

Answer #1

Hoping that This Answer Helps You.

Do comment if any Doubt Occurs.

Please Do Like and Upvote.

Best of Luck.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Chemical Equilibrium and Chemical Kinetics Part A For a certain reaction, Kc = 8.85×1010 and kf=...
Chemical Equilibrium and Chemical Kinetics Part A For a certain reaction, Kc = 8.85×1010 and kf= 7.52×10−2 M−2⋅s−1 . Calculate the value of the reverse rate constant, kr, given that the reverse reaction is of the same molecularity as the forward reaction. Express your answer with the appropriate units. Include explicit multiplication within units, for example to enter M−2⋅s−1 include ⋅ (multiplication dot) between each measurement. Part B For a different reaction, Kc = 1.70×1010, kf=6.63×105s−1, and kr= 3.91×10−5 s−1...
For a certain reaction, Kc = 3.33×10−2 and k f = 1.30×10−2 M−2⋅s−1 M − 2...
For a certain reaction, Kc = 3.33×10−2 and k f = 1.30×10−2 M−2⋅s−1 M − 2 ⋅ s − 1 . Calculate the value of the reverse rate constant, kr , given that the reverse reaction is of the same molecularity as the forward reaction. For a different reaction, Kc = 2.66×104, kf=9.40×105s−1kf=9.40×105s−1 , and kr= 35.3 s−1s−1 . Adding a catalyst increases the forward rate constant to 2.25×108 s−1s−1 . What is the new value of the reverse reaction...
a. For a certain reaction, Kc= 1.53×107 and kf= 22.1 M?2?s?1 . Calculate the b. For...
a. For a certain reaction, Kc= 1.53×107 and kf= 22.1 M?2?s?1 . Calculate the b. For a different reaction, Kc=6.70×103, kf=4.58×103s?1, and kr= 0.684 s?1 . Adding a catalyst increases the forward rate constant to 1.04×106 s?1 . What is the new value of the reverse reaction constant, kr, after adding catalyst? Express your answer numerically in inverse seconds. c. Yet another reaction has an equilibrium constant Kc=4.32×105 at 25 ?C. It is an exothermic reaction, giving off quite a...
For a different reaction, Kc = 7.22×106, kf=4.13×105s−1, and kr= 5.72×10−2 s−1 . Adding a catalyst...
For a different reaction, Kc = 7.22×106, kf=4.13×105s−1, and kr= 5.72×10−2 s−1 . Adding a catalyst increases the forward rate constant to 7.35×107 s−1 . What is the new value of the reverse reaction constant, kr, after adding catalyst?
To understand the relationship between the equilibrium constant and rate constants. For a general chemical equation...
To understand the relationship between the equilibrium constant and rate constants. For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of the concentrations: Kc=[C][D][A][B] If this is an elementary chemical reaction, then there is a single forward rate and a single reverse rate for this reaction, which can be written as follows: forward ratereverse rate==kf[A][B]kr[C][D] where kf and kr are the forward and reverse rate constants, respectively. When equilibrium is reached, the forward and...
For a different reaction, Kc = 1.92×103, kf=6.92×104s−1, and kr= 36.1 s−1 . Adding a catalyst...
For a different reaction, Kc = 1.92×103, kf=6.92×104s−1, and kr= 36.1 s−1 . Adding a catalyst increases the forward rate constant to 1.09×107 s−1 . What is the new value of the reverse reaction constant, kr, after adding catalyst?
For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of...
For a general chemical equation A+B⇌C+D the equilibrium constant can be expressed as a ratio of the concentrations: Kc=[C][D]/[A][B] If this is an elementary chemical reaction, then there is a single forward rate and a single reverse rate for this reaction, which can be written as follows: forward rate=kf[A][B] reverse rate=kr[C][D] where kf and kr are the forward and reverse rate constants, respectively. When equilibrium is reached, the forward and reverse rates are equal: kf[A][B]=kr[C][D] Thus, the rate constants are...
Calculate the equilibrium constant Kc for the net reaction show below AgI(s) + 2NH3(aq) <> Ag(NH3)2+(aq)...
Calculate the equilibrium constant Kc for the net reaction show below AgI(s) + 2NH3(aq) <> Ag(NH3)2+(aq) + I-(aq) For AgI, Ksp=8.3*10^-17 For Ag(NH3)2+ , Kf=1.5*10^7
The reactant concentration in a second-order reaction was 0.110 M after 235 s and 2.70×10−2 M...
The reactant concentration in a second-order reaction was 0.110 M after 235 s and 2.70×10−2 M after 725 s . What is the rate constant for this reaction? Express your answer with the appropriate units. Include an asterisk to indicate a compound unit with multiplication, for example write a Newton-meter as N*m.
The rate constant for a certain reaction is k = 2.00×10−3 s−1 . If the initial...
The rate constant for a certain reaction is k = 2.00×10−3 s−1 . If the initial reactant concentration was 0.400 M, what will the concentration be after 20.0 minutes? Express your answer with the appropriate units. Part B A zero-order reaction has a constant rate of 4.70×10−4 M/s. If after 70.0 seconds the concentration has dropped to 2.00×10−2 M, what was the initial concentration?