Question

A 10.g cube of copper at a temperature T1 is placed in an insulated cup containing...

A 10.g cube of copper at a temperature T1 is placed in an insulated cup containing 10.g of water at a temperature T2. If T1>T2, which of the following is true of the system when it has attained thermal equillibrium? (The specific heat of copper is 0.385 J/g degrees C) and the specific heat of water is 4.184 J/g degrees C)

A. The temperature of the copper changed more than the temperature of the water.

B. The temperature of the water changed more than the temperature of the copper.

C. The temperature of the water and the copper changed by the same amount.

D. The relative temperature changes of the copper and the water cannot be determined without knowing T1 and T2.

Pick the correct answer choice and explain why it is true.

Homework Answers

Answer #1

answer :

D. The relative temperature changes of the copper and the water cannot be determined without knowing T1 and T2.

explanation :

change in temperature of Cu = T1 -T

change in temperature of water = T -T2

q = m Cp dT

T = equilibrium Temperature

heat loss copper loss = heat gain by water

10 x 0.385 x (T1-T) = 10 x 4.184 x (T-T2)

0.385 x (T1-T) = 4.184 x (T-T2) ------------------------>

if T1 , T2 are know we can estimate temperature changes otherwise we cannot conclude which has higher change

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 25 g gold nugget with an initial temperature of 60 °C is dropped into an...
A 25 g gold nugget with an initial temperature of 60 °C is dropped into an insulated cup containing 100 ml of water initially at a temperature of 5°C. What is the final temperature after thermal equilibrium is established? Table 3.4 Specific Heat Capacities of Some Common Substances Substance Specific Heat Capacity (J/g °C) Lead 0.128 Gold 0.128 Silver 0.235 Copper 0.385 Iron 0.449 Aluminum 0.903 Ethanol 2.42 Water 4.184
A hot lump of 46.2 g of copper at an initial temperature of 93.9 °C is...
A hot lump of 46.2 g of copper at an initial temperature of 93.9 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 27.5 g of copper at an initial temperature of 54.7 °C is...
A hot lump of 27.5 g of copper at an initial temperature of 54.7 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling...
An insulated aluminum calorimeter vessel of 150 g mass contains 300 g of liquid nitrogen boiling at 77 K. A metal block at an initial temperature of 303 K is dropped into the liquid nitrogen. It boils away 15.8 g of nitrogen in reaching thermal equilibrium. The block is then withdrawn from the nitrogen and quickly transferred to a second insulated copper calorimeter vessel of 200 g mass containing 500 g of water at 30.1 degrees celsius. The block coolds...
In a copper vessel with a temperature of t1 = 350 C, m2 = 600 g...
In a copper vessel with a temperature of t1 = 350 C, m2 = 600 g of ice with a temperature of t1 = 10 C. After some time a Mixture of m3 = 550 g ice and m4 = 50 g water. Find the mass of the vessel m1. In the solution, neglect the heat exchange between the vessel and environment. The specific heat capacity of copper is cK = 0:39 kJ/(kg*K). The specific Heat capacity of the ice...
A 30.5 g sample of an alloy at 91.9°C is placed into 49.4 g water at...
A 30.5 g sample of an alloy at 91.9°C is placed into 49.4 g water at 25.0°C in an insulated coffee cup. The heat capacity of the coffee cup (without the water) is 9.2 J/K. If the final temperature of the system is 31.1°C, what is the specific heat capacity of the alloy? (c of water is 4.184 J/g×K) ____J/g°C?
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of...
Steam at 100°C is condensed into a 38.0 g copper calorimeter cup containing 260 g of water at 27.0°C. Determine the amount of steam (in g) needed for the system to reach a final temperature of 56.0°C. The specific heat of copper is 387 J/(kg · °C).
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample...
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample of copper weighing 11.0 g is placed in a dry test tube and heated for 30 minutes in a boiling water bath at 100.0°C. The heated test tube is carefully removed from the water bath with laboratory tongs and inclined so that the copper slides into the water in the insulated container. Given that the specific heat of solid copper is 0.385 J/(g·°C), calculate...
A 55.1-g sample of an alloy at 93.0°C is placed into 154 g of water at...
A 55.1-g sample of an alloy at 93.0°C is placed into 154 g of water at 22.0°C in an insulated coffee cup. Assume that no heat is absorbed by the cup. If the final temperature of the system is 31.1°C, what is the specific heat capacity of the alloy in J/(g.K)? Don't include units. cH2O = 4.184 J/g.K
52.76 g of copper pellets are removed from a 333°C oven and immediately dropped into 151...
52.76 g of copper pellets are removed from a 333°C oven and immediately dropped into 151 mL of water at 16°C in an insulated cup. What will the new water temperature be? Specific heat of the copper is 385 J/kg·°C, specific heat of the water is 4190 J/kg·°C.