Question

A 401−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel...

A 401−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel containing 159 g of water at 22.8°C. Assuming no loss of water and a heat capacity for the vessel of 10.0 J/°C, what is the final temperature of the system (c of copper = 0.387 J/g·°C)?

Homework Answers

Answer #1

m(water) = 159.0 g

T(water) = 22.8 oC

C(water) = 4.184 J/goC

m(copper) = 401.0 g

T(copper) = 89.5 oC

C(copper) = 0.3878 J/goC

T = to be calculated

We will be using heat conservation equation

Let the final temperature be T oC

use:

heat lost by copper = heat gained by water and 3

m(copper)*C(copper)*(T(copper)-T) = m(water)*C(water)*(T-T(water)) + C3*(T-T(water))

401.0*0.3878*(89.5-T) = 159.0*4.184*(T-22.8)+10.0*(T-22.8)

155.5078*(89.5-T) = 675.256*(T-22.8)

13917.9481 - 155.5078*T = 675.256*T - 15395.8368

T= 35.3 oC

Answer: 35.3 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 404−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel...
A 404−g piece of copper tubing is heated to 89.5°C and placed in an insulated vessel containing 159 g of water at 22.8°C. Assuming no loss of water and a heat capacity for the vessel of 10.0 J/°C, what is the final temperature of the system (c of copper = 0.387 J/g·°C)?
An 890-g iron block is heated to 370 ∘C and placed in an insulated container (of...
An 890-g iron block is heated to 370 ∘C and placed in an insulated container (of negligible heat capacity) containing 35.0 g of water at 20.0 ∘C. What is the equilibrium temperature of this system? The average specific heat of iron over this temperature range is 560 J/(kg⋅K). Answer in ∘C. I have already tried 109 ∘C and 110 ∘C, so I don't know what I'm doing wrong. :(
A 102 g piece of ice at 0.0°C is placed in an insulated calorimeter of negligible...
A 102 g piece of ice at 0.0°C is placed in an insulated calorimeter of negligible heat capacity containing 100 g of water at 100°C. Find the entropy change of the universe for this process? 135 J/K 134 J/K is wrong,
A 10.g cube of copper at a temperature T1 is placed in an insulated cup containing...
A 10.g cube of copper at a temperature T1 is placed in an insulated cup containing 10.g of water at a temperature T2. If T1>T2, which of the following is true of the system when it has attained thermal equillibrium? (The specific heat of copper is 0.385 J/g degrees C) and the specific heat of water is 4.184 J/g degrees C) A. The temperature of the copper changed more than the temperature of the water. B. The temperature of the...
A 100-g piece of ice at 0.0oC is placed in an insulated calorimeter of negligible heat...
A 100-g piece of ice at 0.0oC is placed in an insulated calorimeter of negligible heat capacity containing 100 g of water at 100oC. (a) What is the final temperature of the water once thermal equilibrium is established? (b) Find the entropy change of the universe for this process.
A 50 gram piece of copper at 200°C is placed in 100 grams of water at...
A 50 gram piece of copper at 200°C is placed in 100 grams of water at 25°C. Assuming no loss of heat to the surroundings, determine the final temperature of the water and copper.
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and...
A 35.7 gram sample of iron (heat capacity 0.45 g/J°C) was heated to 99.10 °C and placed into a coffee cup calorimeter containing 42.92 grams of water initially at 15.15 °C. What will the final temperature of the system be? (Specific heat of water is 4.184 J/g°C). Please show work.
A 1.05 kg block of copper at 100°C is placed in an insulated calorimeter of negligible...
A 1.05 kg block of copper at 100°C is placed in an insulated calorimeter of negligible heat capacity containing 3.50 L of liquid water at 0.0°C. (a) Find the entropy change of the copper block. J/K (b) Find the entropy change of the water. J/K (c) Find the entropy change of the universe. J/K
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0...
1. A 74.2-g piece of metal is heated to 89.55 degrees C and dropped into 52.0 g of water at 23.22 degrees C in a calorimeter with the heat capacity of 41.0 J/C . The final temperature of the system is 27.60 degrees C. a) Assuming that the metal does not react with water and Cs(H2O) = 4.18 J/g*C , calculate the specific heat capacity of the metal in J/g*C b) Most metals have the same molar heat capacity of...
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample...
An insulated container is used to hold 43.6 g of water at 20.6 °C. A sample of copper weighing 11.0 g is placed in a dry test tube and heated for 30 minutes in a boiling water bath at 100.0°C. The heated test tube is carefully removed from the water bath with laboratory tongs and inclined so that the copper slides into the water in the insulated container. Given that the specific heat of solid copper is 0.385 J/(g·°C), calculate...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT