Question

Given that diatomic chlorine gas is the stablest form of the element, and that the Hf°...

Given that diatomic chlorine gas is the stablest form of the element, and that the Hf° value for atomic chlorine is 121.7 kJ mol 1, calculate the maximum wavelength of light that can dissociate diatomic chlorine into the monatomic form. Does such a wavelength correspond to light in the visible or the UV-A or the UV-B region?

Homework Answers

Answer #1

Answer – We are given the, ∆Hfo = 121.7 kJ/mol for the atomic chlorine

We know,

∆Hfo in kJ = 121.7 kJ/mol* 1 mole / 6.023*1023

                = 2.02*10-22 kJ

               = 2.02*10-19 J

We know, E = h*C/λ

So, λ = h*C / E

        = 6.626*10-34 J.s * 3.0*108 m.s-1 / 2.02*10-19 J

        = 9.84*10-7 m

      = 984 nm

maximum wavelength of light that can dissociate diatomic chlorine into the monatomic form is 984 nm

The visible light wavelength range is 400 nm to 780 nm and for UV it is 200 to 400 nm, so this wavelength is not corresponding to light in the visible or the UV-A or the UV-B region.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Diatomic and atomic chlorine gas exist in equilibrium according to the reaction below: Calculate the equilibrium...
Diatomic and atomic chlorine gas exist in equilibrium according to the reaction below: Calculate the equilibrium constant for the reaction given that the standard molar Gibbs free energy of the reaction, at 298 K is 10.6 kJ/mol. Predict the extent of the reaction, ε for this reaction if 1.0 mole of ??2 and 0.0 moles of Cl were present initially. The equilibrium pressure is 0.85 bar
Diatomic and atomic fluorine gas exists in equilibrium according to the following reaction F2(g) -><- 2F(g)...
Diatomic and atomic fluorine gas exists in equilibrium according to the following reaction F2(g) -><- 2F(g) (a) The standard molar Gibbs free energy of reaction, ∆rG at 298 K is 5.25 kJ mol−1 at 298 K. Use this information to calculate the equilibrium constant for the reaction. (b) Calculate the extent of reaction, ξ, for this reaction if 1.0 mole of F2 and 0.0 moles of F are present initially. The equilibrium pressure is 1.3 bar.
(i) The element, S (sulfur), undergoes a phase transition from a rhombic form to a monoclinic...
(i) The element, S (sulfur), undergoes a phase transition from a rhombic form to a monoclinic form at 95.4°C. If ΔHtransition=0.38 kJ mol-1, calculate ΔStransition under the above conditions. Show all working. (ii) Monoclinic sulfur is known to melt at 119°C. Given ΔHfusion=1.23 kJ mol-1, calculate, showing all working, ΔSfusion. (iii) Given the S occurs as S8 in solid or liquid forms, convert the values of the enthalpy and entropy of fusion above to those expected for S8.
Limiting Reactant Procedure In the following chemical reaction, 2 mol of A will react with 1...
Limiting Reactant Procedure In the following chemical reaction, 2 mol of A will react with 1 mol of B to produce 1 mol of A2B without anything left over: 2A+B→A2B But what if you're given 2.8 mol of A and 3.2 mol of B? The amount of product formed is limited by the reactant that runs out first, called the limiting reactant. To identify the limiting reactant, calculate the amount of product formed from each amount of reactant separately: 2.8...
a) A mildly restored ‘Knight-Rider’ 1989 Pontiac Trans Am GTA powered by a 5.7 litre V8...
a) A mildly restored ‘Knight-Rider’ 1989 Pontiac Trans Am GTA powered by a 5.7 litre V8 can do a quarter mile S from rest in a time t of about 15 seconds. Using distance: S=a t2 /2 , force: F=ma and work: W=FS, calculate the amount of work (energy) in kJ required to do the standing quarter mile given that the mass (m) of this Trans Am is 3,500 pounds. Assume that the acceleration (a) is constant. (This is not...
Laser Cooling of Atoms: In the simplest versions of laser cooling, a gas of atoms can...
Laser Cooling of Atoms: In the simplest versions of laser cooling, a gas of atoms can be cooled from room temperature (?300 K) to about 1 × 10-4 K through the absorption of light. The absorbed light transfers momentum to the atoms, thereby slowing down those atoms that are moving in the direction of the incoming laser beam. The following questions refer to a gas of rubidium atoms. (a) The average speed of atoms in the gas phase is directly...
1.             Given the equations:                          N2(g) + O
1.             Given the equations:                          N2(g) + O2(g) ® 2NO(g)                    ∆H = +180.7 kJ                                                                                                                                                                 2NO(g) + O2(g) ® 2NO2(g)              ∆H = -113.1 kJ                                                                                                                                                                 2N2O(g) ® 2N2(g) + O2(g)                ∆H = -163.2 kJ Calculate the change in enthalpy for the reaction:       N2O(g) + NO2(g) ® 3NO(g) _______________                                                                                                                                                                                                                                                                                                                                                                                                                             2.   An electron in a carbon atom makes a transition from n=2 to n=3. a) Does this transition require energy or emit energy?                                                               _________________ b) Can...
4. Thermodynamic data for C(graphite) ​and C(​​diamond)​ at 298 K is given in the table below....
4. Thermodynamic data for C(graphite) ​and C(​​diamond)​ at 298 K is given in the table below. delta Hf​o ​(kJ/mol) o​ (J/mol K C​(graphite) 0.0 5.740 C​(diamond) 1.895 2.377 a) Calculate delta H​o​ and delta S​o and delta G​o ​for the transformation of 1 mole of graphite to diamond at 298 K. b) Is there a tempature at which this transformation will occur spontaneously at atmospheric pressure? Justify your answer. 8. Methanol can be made using the Fischer-Tropsch process according to...
Post lab question reguarding bomb calorimetry: Heat capacity for calorimeter: 10403.64 J/◦C Delta H TTCC: -6864.20...
Post lab question reguarding bomb calorimetry: Heat capacity for calorimeter: 10403.64 J/◦C Delta H TTCC: -6864.20 kJ/mol Resonance energy benzene: 423.01 kJ/mol ΔE = -7096.54kJ/mol 1. How does the bomb get sealed when it is charged with oxygen gas? 2. Why is 1 mL of water added to the bomb before the oxygen gas is added? Would one drop (0.05 mL) of water be satisfactory? 3. Is the mechanical energy of the stirrer included in the heat capacity of the...
Question 1 In Part IIB, neutralization of acetic acid and NaOH, what is the limiting reactant...
Question 1 In Part IIB, neutralization of acetic acid and NaOH, what is the limiting reactant of the neutralization reaction? HCl NaOH acetic acid water Question 2 A sample of solid X was dissolved in 200. g of water at 20. C. If the final temperature of the solution was 15. C, which one if true about the dissolution of X in water? Endothermic with positive heat of solution Exothermic with positive heat of solution Exothermic with negative heat of...