Question

The specific heat capacity of liquid water is 4.18 J/g-K. How many joules of heat are...

The specific heat capacity of liquid water is 4.18 J/g-K. How many joules of heat are released when the temperature of 9.00 g of water decreases from 34.2 °C to 45.5 °C?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The heat capacity of liquid water is 4.18 J/g
The heat capacity of liquid water is 4.18 J/g
The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of water.
The specific heat of water is 4.18 J/(g⋅∘C). Calculate the molar heat capacity of water.
Pre lab 9 If the specific heat of methanol is 2.51 J/K-g, how many joules are...
Pre lab 9 If the specific heat of methanol is 2.51 J/K-g, how many joules are necessary to raise the temperature of 86 g of methanol from 27 oC to 64 oC ? (------------) J
Water has a specific heat of 4.184 J/g-degree. How many joules are needed to heat 525g...
Water has a specific heat of 4.184 J/g-degree. How many joules are needed to heat 525g of water from 25.0oC to 95.0oC ? Explaining why, which, if any, of the following water solutions will have the lowest freezing temperature ? Explain the reason for your answer. A. 0.20m NaCl B. 0.10m AlCl3 C. 0.40m KBr D. 0.20m CaCl2
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are...
1. The specific heat of iron metal is 0.450 J/g⋅K. How many J of heat are necessary to raise the temperature of a 1.05 −kg block of iron from 28.0 ∘Cto 85.0 ∘C? 2. A 1.80-g sample of phenol (C6H5OH) was burned in a bomb calorimeter whose total heat capacity is 11.66 kJ/∘C. The temperature of the calorimeter plus contents increased from 21.36∘Cto 26.37∘C. A. Write a balanced chemical equation for the bomb calorimeter reaction. B. What is the heat...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
The enthaply of fusion of ice is 334 J/g. The heat capacity of liquid water is...
The enthaply of fusion of ice is 334 J/g. The heat capacity of liquid water is 4.18 j/gxC. What is the smallest number of ice cubes at 0C, each containing one mole of water necessary to cool 500 g of liquid water intially at 20 C to 0 C?
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
Calculate the energy needed to heat 14.6 g ice at -10.0 °C to liquid water at...
Calculate the energy needed to heat 14.6 g ice at -10.0 °C to liquid water at 70.0 °C. The heat of vaporization of water = 2257 J/g, the heat of fusion of water = 334 J/g, the specific heat capacity of water = 4.18 J/g·°C, and the specific heat capacity of ice = 2.06 J/g·°C.
Specific heat of bro mine liquid density equals 3.12 g/mL is .226 J/g • k. A)...
Specific heat of bro mine liquid density equals 3.12 g/mL is .226 J/g • k. A) how much heat is required to raise the temperature of 10 mL of liquid bromine from 25°C to 27.30°C B) if the initial temperature of 1 L of bromine is 100°C what is the final temperature?