Question

The first-order decomposition of a colored chemical species, X, into colorless products is monitored with a...

The first-order decomposition of a colored chemical species, X, into colorless products is monitored with a spectrophotometer by measuring changes in absorbance over time. Species X has a molar absorptivity constant of 5.00x103 cm–1M–1 and the path length of the cuvette containing the reaction mixture is 1.00 cm. The data from the experiment are given in the table below.

[X]

(M)

Absorbance (A) Time (min)
? 0.600 0.0
4.00 x 10-5 0.200 35.0
3.00 x 10-5 0.150 44.2
1.50 x 10-5 0.075 ?

(a) Calculate the initial concentration of the unknown species. A = abc

(b) Calculate the rate constant for the first order reaction using the values given for concentration and time. Include units with your answers.

(c) Calculate the minutes it takes for the absorbance to drop from 0.600 to 0.075.

(d) Calculate the half-life of the reaction. Include units with your answer.

(e) Experiments were performed to determine the value of the rate constant for this reaction at various temperatures. Data from these experiments were used to produce the graph below, where T is temperature. This graph can be used to determine Ea, the activation energy. (i) Label the vertical axis of the graph (ii) Explain how to calculate the activation energy from this graph.

Homework Answers

Answer #1

d) half life, t1/2 = 0.693 / k = 0.693 / (0.0314 min) = 22.07 min

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Fe(NO3)3. 9H2O in 0.5M HNO3 forms a colorless hexa-aquocomplex with the chemical formula {Fe(H2O)6)3+ (aq) This...
Fe(NO3)3. 9H2O in 0.5M HNO3 forms a colorless hexa-aquocomplex with the chemical formula {Fe(H2O)6)3+ (aq) This complex can then undergo an equilibrium reaction with pottasium thiocynate (KSCN) to form a red complex with the chemical formula {Fe(H2O)5SCN}2+ (aq). In order to make this reaction occur, the two chemicals need to be mixed with 0.5M nitric acid. This equilibrium reaction is shown below: {Fe(H2O)6}3+ (aq) + SCN-(aq) <--------> {Fe(H2O)5SCN}2+(aq) + H2O (l) a) When recording the absorbance values, what should be...
The rate constants for a first order reaction are found to be 2.76*10-5 s^-1 at 25...
The rate constants for a first order reaction are found to be 2.76*10-5 s^-1 at 25 degrees celsius and 6.65*10^-4 s^-1 at 50 degrees celsius, respectively. A) Calculate the activation energy Ea in kilojoules per mole. B) Calculate the rate constant at 75 degrees celsius
For the first order decomposition of H2O2(aq), given k = 3.60 x 10-3 s-1 and the...
For the first order decomposition of H2O2(aq), given k = 3.60 x 10-3 s-1 and the initial concentration of [H2O2]o is 0.882 M, determine : (a) the time at which [H2O2]t decreases to 0.600 M; (b) what will be the concentration of [H2O2]t after 225 s and (c) find the half-life of the reaction.
a.If a solution of a compound that has a molar absorptivity 45 M–1 cm–1 placed in...
a.If a solution of a compound that has a molar absorptivity 45 M–1 cm–1 placed in a cuvette with a path length of 10 mm has an absorbance of 0.65, what is the molarity of the compound in solution? Show work. b. What would the value of the equilibrium constant be for the formation of FeNCS2+ from Fe3+ and SCN– , if the final equilibrium concentration of [FeNCS2+] = 7.84 x 10–3 M when the solution initially had [Fe3+] =...
The rate constant of a first-order reaction is 0.0032 x 10-4 L/mol *s at 640 K....
The rate constant of a first-order reaction is 0.0032 x 10-4 L/mol *s at 640 K. If the activation energy is 176,406J/mol, calculate the temperature at which is rate constant is 0.0039 x10 -4 L/mol*s. Show your work please.
1) Express your answer as a molecular formula. a) Use the data below to calculate the...
1) Express your answer as a molecular formula. a) Use the data below to calculate the heat of hydration of lithium chloride. b) Calculate the heat of hydration of sodium chloride. Compound Lattice Energy (kJ/mol) ΔHsoln(kJ/mol) LiCl -834 -37.0 NaCl -769 +3.88 2)A certain reaction with an activation energy of 115 kJ/mol was run at 485 K and again at 505 K . What is the ratio of f at the higher temperature to f at the lower temperature? Express...
At elevated temperatures, in the absense of a catalyst, nitrous oxide decomposes by a first order...
At elevated temperatures, in the absense of a catalyst, nitrous oxide decomposes by a first order proces according the the equation: 2N2O (g) --> 2N2 (g) + O2 (g). From an experiment at 430 degrees Celsius, k is found to be 3.8 x 10-5 s-1; at 700 degrees Celsius, k is found to be 1.0 s-1. a. Using the two-point version of the linearized Arrhenius equation, please find the activation energy (kJ/mol) for the decomposition of N2O (g). b. Given...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown...
3)The thermal decomposition of acetaldehyde is a second order reaction CH3CHO-> CH4+CO from the data shown below, calculate the average rate of change in the pressure of acetaldehyde between 42 and 105 s. include the correct sign and units. ( this is analogous to finding the average rate of change in concentration, just substitute pressure for concentration.) 4) for the reaction shown below which one of the following statements can you rightly assume? 2H2S (g) +O2 (g) ->2S (s)+ 2H2O...
A student prepared the following two mixtures and recorded their absorbances in a cuvette with a...
A student prepared the following two mixtures and recorded their absorbances in a cuvette with a 1.00 cm path length: Mix # .20 M Fe3 .020 M Fe3 3.25*10^-4M SCN Absorbance 1 10.0 mL -- 10.0 mL .708 2 -- 10.0 mL 10.0 mL .423 1. Write the balanced equilibrium reaction of Fe3 (aq) with SCN (aq) to form [FeSCN]2 (aq). 2. Write the equilibrium formation constant equation for the reaction (Kf expression). Determination of moral absoptivity 3. Assuming that...
1)At 25°C, some second-order reaction 3 X (g)→ 2 Y (g) + Z (g) has a...
1)At 25°C, some second-order reaction 3 X (g)→ 2 Y (g) + Z (g) has a half-life of 5.82 hours when the initial concentration of X is 4.46 M. (a) What is rate constant for this reaction? (b) How much X will be left after 17.5 hours? Example of answer: (a) k = [type your answer] M–1 h–1; (b) [X]t = [type your answer] M. 2) For some second-order reaction: 3 X (g)→ Y (g) + Z (g). The following...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT