Question

An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...

An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 50.0 atm and releases 55.9 kJ of heat. Before the reaction, the volume of the system was 9.00 L . After the reaction, the volume of the system was 3.00 L .

Homework Answers

Answer #1

U    = q + W

q         = -55.9KJ   = -55900J

W     = -PV

          = -50*(3-9)

            = 300L-atm                      [1 L-atm = 101.3J]

             = 300*101.3J

             = 30390J

U    = q + W

          = -55900+30390    = -25510J   = -25.51KJ >>>>>answer

internal energy is released = -25.51KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 50.0 atm and releases 70.7 kJ of heat. Before the reaction, the volume of the system was 9.00 L . After the reaction, the volume of the system was 2.60 L . Calculate the total internal energy change, ΔE, in kilojoules.
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 40.0 atm and releases 67.4 kJ of heat. Before the reaction, the volume of the system was 6.40 L . After the reaction, the volume of the system was 3.00 L . Calculate the total internal energy change, ΔE, in kilojoules.
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 30.0 atm and releases 55.7 kJ of heat. Before the reaction, the volume of the system was 8.00 L . After the reaction, the volume of the system was 2.80 L . Calculate the total internal energy change, ΔE, in kilojoules.
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 40.0 atm and releases 74.8 kJ of heat. Before the reaction, the volume of the system was 7.60 L . After the reaction, the volume of the system was 2.40 L . Calculate the total internal energy change, ΔE , in kilojoules
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 35.0 atm and releases 70.7 kJ of heat. Before the reaction, the volume of the system was 8.80 L . After the reaction, the volume of the system was 2.00 L . Calculate the total internal energy change, ΔE, in kilojoules.
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing...
An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 45.0 atm and releases 71.4 kJ of heat. Before the reaction, the volume of the system was 7.60 L . After the reaction, the volume of the system was 2.20 L . Calculate the total internal energy change, ΔE, in kilojoules. ________________________________________________________________________ An ideal gas (which is is a hypothetical gas that conforms to the laws...
2A) An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws...
2A) An ideal gaseous reaction (which is a hypothetical gaseous reaction that conforms to the laws governing gas behavior) occurs at a constant pressure of 40.0 atm and releases 65.6 kJ of heat. Before the reaction, the volume of the system was 6.60 L . After the reaction, the volume of the system was 2.40 L . Calculate the total internal energy change, ΔE, in kilojoules. 2B)An ideal gas (which is is a hypothetical gas that conforms to the laws...
An ideal gas (which is is a hypothetical gas that conforms to the laws governing gas...
An ideal gas (which is is a hypothetical gas that conforms to the laws governing gas behavior) confined to a container with a massless piston at the top. (Figure 2) A massless wire is attached to the piston. When an external pressure of 2.00 atm is applied to the wire, the gas compresses from 5.40 to 2.70 L . When the external pressure is increased to 2.50 atm, the gas further compresses from 2.70 to 2.16 L . In a...
An ideal gas (which is is a hypothetical gas that conforms to the laws governing gas...
An ideal gas (which is is a hypothetical gas that conforms to the laws governing gas behavior) confined to a container with a massless piston at the top. A massless wire is attached to the piston. When an external pressure of 2.00 atm is applied to the wire, the gas compresses from 4.90 to 2.45 L . When the external pressure is increased to 2.50 atm, the gas further compresses from 2.45 to 1.96 L . In a separate experiment...
Ideal Gas Laws: Needs explanation and steps to derived the answers Thank you. The reaction between...
Ideal Gas Laws: Needs explanation and steps to derived the answers Thank you. The reaction between sodium carbonate and hydrochloric acid yields carbonic acid and a salt. Carbonic acid further decomposes into water and carbon dioxide. In an experiment, you initially have 80 ml of a .70 M solution of sodium carbonate and .10 L of .65 M solution of hydrochloric acid. The two solutions are mixed and are allowed to react and the gas product is collected in an...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT