Question

Determine the concentrations of BaBr2, Ba2 , and Br– in a solution prepared by dissolving 2.51...

Determine the concentrations of BaBr2, Ba2 , and Br– in a solution prepared by dissolving 2.51 × 10–4 g BaBr2 in 2.50 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per million (ppm).

Homework Answers

Answer #1

concentrations of BaBr2 =

M =n/ V (l)                                                                         

n = w/m = 2.51*10-4/137+16 =2.51*10-4 /297

m = 2.51*10-4 /297 *2.5

    = 0.0033*10-4

     = 3.3 *10-4

this is the concentration of BaBr2

BaBr2    ---------->      Ba+2           +       2Br-

3.3*10-7m                   3.3*10-7m    2 * 3.3*10-7m   

                                                                              = 6.6*10-7m

this is concentration of three.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the concentrations of BaBr2, Ba2 , and Br– in a solution prepared by dissolving 1.87...
Determine the concentrations of BaBr2, Ba2 , and Br– in a solution prepared by dissolving 1.87 × 10–4 g BaBr2 in 2.50 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per million (ppm).
Determine the concentrations of BaBr2, Ba2 , and Br– in a solution prepared by dissolving 2.14...
Determine the concentrations of BaBr2, Ba2 , and Br– in a solution prepared by dissolving 2.14 × 10–4 g BaBr2 in 1.75 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per million (ppm). [BaBr2]= [Ba^2+]= [Br^-]
Determine the concentrations of K2SO4, K+ , and SO42– in a solution prepared by dissolving 1.71...
Determine the concentrations of K2SO4, K+ , and SO42– in a solution prepared by dissolving 1.71 × 10–4 g K2SO4 in 2.50 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per million (ppm). [Note: Determine the formal concentration of SO42–. Ignore any reactions with water.] [K2SO4] = ________M [K+] = ________M        = ________ppm [SO42–] = ________M              = ________ppm
Determine the concentrations of Na2CO3, Na , and CO32– in a solution prepared by dissolving 2.66...
Determine the concentrations of Na2CO3, Na , and CO32– in a solution prepared by dissolving 2.66 × 10–4 g Na2CO3 in 2.25 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per million (ppm). Note: Determine the formal concentration of CO32–. Ignore any reactions with water.
Determine the concentrations of K2SO4, K+, and SO42- in a solution prepared by dissolving 2.52 x...
Determine the concentrations of K2SO4, K+, and SO42- in a solution prepared by dissolving 2.52 x 10-4 g K2SO4 in 1.75 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in ppm. Note: Determine the formal concentration of SO42-, ignore any reactions with water.
Determine the concentrations of Na2CO3, Na , and CO32– in a solution prepared by dissolving 1.28...
Determine the concentrations of Na2CO3, Na , and CO32– in a solution prepared by dissolving 1.28 × 10–4 g Na2CO3 in 2.00 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per thousand (ppt). Note: Determine the formal concentration of CO32–. Ignore any reactions with water.
Determine the concentrations of Na2CO3, Na , and CO32– in a solution prepared by dissolving 1.45...
Determine the concentrations of Na2CO3, Na , and CO32– in a solution prepared by dissolving 1.45 × 10–4 g Na2CO3 in 2.00 L of water. Express all three concentrations in molarity. Additionally, express the concentrations of the ionic species in parts per thousand (ppt). Note: Determine the formal concentration of CO32–. Ignore any reactions with water. [Na2CO3] = __________ M [Na+] =___________ M = _________ ppt [CO3^2-]=___________M = ___________ppt
Determine the concentrations of BaBr2, Ba2 , and Br
Determine the concentrations of BaBr2, Ba2 , and Br
If a saturated solution prepared by dissolving solid BaSO4 in water has [Ba2+] = 1.11 ×10−5M,...
If a saturated solution prepared by dissolving solid BaSO4 in water has [Ba2+] = 1.11 ×10−5M, what is the value of Ksp for BaSO4?
A solution is made by dissolving 15.1 g of barium hydroxide, Ba(OH)2, in enough water to...
A solution is made by dissolving 15.1 g of barium hydroxide, Ba(OH)2, in enough water to make exactly 100. mL of solution. Calculate the molarity of each species: Ba(OH)2 _______ mol/L Ba2+ _________ mol/L OH- _________ mol/L