Question

Describe radius ratio rule. Lithium metal crystallises in a body centered cubic crystal. Ifthe length of...

Describe radius ratio rule. Lithium metal crystallises in a body centered cubic crystal. Ifthe length of the side of the unit cell of lithium is 351 pm, what will be the atomic radius of the lithium ion?

Homework Answers

Answer #1

The Radius Ratio Rule

The arrangement ions in a crystal is greatly influenced by the ratio of radii of the ions. We have seen in the previous section (Interstitial sites in close packed lattices) that the limiting ratio for a cation to fit in an octahedral arrangement of anions is greater than 0.414 (i.e., r+/r->0.414). Only in such a situation a cation will be able to keep the six anions from touching each other. Smaller cations will prefer to fit into tetrahedral holes in the lattice. For radius ratio (r+/r-) ranging between 0.225 to 0.414, tetrahedral sites will be preferred. Above 0.414, octahedral coordination is favoured.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain metal crystallizes in a body centered cubic unit cell with an edge length of...
A certain metal crystallizes in a body centered cubic unit cell with an edge length of 310 pm. What is the length in Angstroms of the unit cell diagonal that passes through the atom?
If the atomic radius of potassium is 227 pm and potassium crystallizes in a body-centered cubic...
If the atomic radius of potassium is 227 pm and potassium crystallizes in a body-centered cubic shape, What is the volume in cm3 of a unit cell of potassium to 3 sig figs
BCC (body-centered cubic) crystal structure is one of common crystal structuresfor metals. Please do the following...
BCC (body-centered cubic) crystal structure is one of common crystal structuresfor metals. Please do the following questions. (a) Describe what is a BCC structure and draw a BCC unit cell. (b) Calculate the radius of a vanadium (V) atom, given that V has a BCCcrystal structure, a density of 5.96 g/cm3, and an atomic weight of 50.9 g/mol.
1. Unit Cells i. A certain metal crystallizes in a face-centered cubic unit cell. If the...
1. Unit Cells i. A certain metal crystallizes in a face-centered cubic unit cell. If the atomic radius is 150 pm, calculate the edge length (cm) and volume of the unit cell (cm3)? ii. If said metal is Gold (Au), calculate the density.
Chromium metal crystallizes as a body-centered cubic lattice. If the atomic radius of Cr is 1.25...
Chromium metal crystallizes as a body-centered cubic lattice. If the atomic radius of Cr is 1.25 angstroms, what is the density of Cr metal in g/cm3?
A metal (FW 243.7 g/mol) crystallizes into a body-centered cubic unit cell and has a radius...
A metal (FW 243.7 g/mol) crystallizes into a body-centered cubic unit cell and has a radius of 1.86 Å. What is the density of this metal in g/cm3?
Chromium crystallizes in a body-centered cubic unit cell with an edge length of 2.885 Å. (a)...
Chromium crystallizes in a body-centered cubic unit cell with an edge length of 2.885 Å. (a) What is the atomic radius (in Å) of chromium in this structure? ____ Å (b) Calculate the density (in g/cm3) of chromium. ____ g/cm3
Iridium metal crystalizes in a face-centered cubic structure. The edge length of the unit cell was...
Iridium metal crystalizes in a face-centered cubic structure. The edge length of the unit cell was found by x-ray diffraction to be 383.9 pm. The density of iridium is 22.42g/cm^3. Calculate the mass of an iridium atom. Use Avogadro's number to calculate the atomic mass of iridium.
Aluminum metal crystallizes in a face-centered cubic unit cell. If the atomic radius of an Al...
Aluminum metal crystallizes in a face-centered cubic unit cell. If the atomic radius of an Al is 1.43Angstroms, what is the density of aluminum (in g/cm^3)
1. Rubidium metal has a body-centered cubic structure. The density of the metal is 1.532 g/cm3....
1. Rubidium metal has a body-centered cubic structure. The density of the metal is 1.532 g/cm3. Calculate the radius of the rubidium atom. Assume that rubidium atoms are spheres. Then note that each corner sphere of the unit cell touches the body-centered sphere. 2. Copper metal has a face-centered cubic structure. The density of the metal is 8.93 g/cm3. Calculate the radius of the copper atom. Assume that copper atoms are spheres. Then note that the spheres on any face...