Question

used Mg for these trials Trial HCl (mL) Mass (g) Ti degrees Celsius Tf degrees Celsius...

used Mg for these trials
Trial HCl (mL) Mass (g) Ti degrees Celsius Tf degrees Celsius
#1 7.5 mL 0.08 g 24 o C 62.0 o C
#2 7.5 mL 0.05 g 24.9 o C 57.9 o C
used MgO for these trials
Trial HCl (mL) Mass (g) Ti degrees Celsius Ti degrees Celsius
#1 7.5 mL 0.13 g 23.3 o C 30.1 o C
#2 7.5 mL 0.15 g 22.7 o C 36.8 o C

Ti = initial temperature Tf = final temperature

Report the calculated value for ∆Hf° for MgO and the percent error, and why can the specific heat capacity of the HCl solution be assumed the same as the specific heat capacity as water?

Homework Answers

Answer #1

For trial 1.:

Total mass of solutio --> 7.5 mL = 7.5 g

mol of Mg = mass/MW= 0.08 / 24.3 = 0.0033 mol of Mg

1 mol of Mg --> 1 mol of MgO

dT = Tf-Ti = 62-24 = 38 °C

Qsolution = m*C*dT = 7.5*4.184*38 = 1192.44 J

now

HRxn = -Q/n = -1192.44 / 0.0033

HRxn = -361345.45 J/mol

HRxn = -361.35 kJ/mol

The same is valid for all other species

Actual value for MgO = -601.6 kJ/mol

Note that

%error = (real -calcualted)/(real ) * 100% = (361.35  - 601.6) / 601.6*100 = 39.9%

now...

we can assume that Hcl solution has same properties as water, since it is diluted

note that HCl is approx 2-5% in solutoin vs. 90-95% of water

therefore, Speicifc heat of solution = Speicifc heat of water

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to...
a 25.0g piece of aluminum (molar heat capacity of 24.03 J/g degrees Celsius) is heated to 82.4 degrees Celsius and dropped into a calorimeter containing water (specific heat capacity of water is 4.18 J/g degrees Celsius) initially at 22.3 degrees Celsius. The final temperature of the water is 24.98 degrees Celsius. Calculate the mass of water in the calorimeter.
When 100 mL of Ba(NO3)2 solution at 25 degrees Celsius is mixed with 100 mL solution...
When 100 mL of Ba(NO3)2 solution at 25 degrees Celsius is mixed with 100 mL solution CaSO4 solution at 25 degrees Celsius in calorimeter, the white solid BaSO4 forms and the temperature of the mixture increases to 28.1 degrees Celsius. Assuming that the calorimeter absorbs only a negligible quantity of heat and the specific heat capacity of the solution is 4.184 J/g.degrees Celsius, and that the density of the final solution is 1.0 g/mL, calculate the enthalpy change of this...
Suppose that 100.0 g of ice at 0 degrees Celsius are added to 300.0 g of...
Suppose that 100.0 g of ice at 0 degrees Celsius are added to 300.0 g of water at 25.00 degrees Celsius. Is this sufficient ice to lower the temperature of the water to 5.00 degrees Celsius and still have ice remaining? Calculate the energy (heat), which must be removed from water to achieve the desired temperature change, and then prove that there is (is not) sufficient ice to cool the water. Use the specific heat capacity of water (4.184 J/g-*C)...
When 0.113 g of Zn(s) combines with enough HCl to make 53.6 mL of HCl(aq) in...
When 0.113 g of Zn(s) combines with enough HCl to make 53.6 mL of HCl(aq) in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.3 °C to 24.7 °C: Zn(s) + 2HCl(aq) → ZnCl2​(aq) + H2​(g) Calculate the enthalpy change of the reaction ΔHrxn​ in J/mol. Insert your answer in kJ, but do not write kJ after the number. (Assume the density of the solution is 1.00 g/mL and the...
When 0.109 g of Zn(s) combines with enough HCl to make 55.7 mL of HCl(aq) in...
When 0.109 g of Zn(s) combines with enough HCl to make 55.7 mL of HCl(aq) in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.2 °C to 24.8 °C: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) Calculate the enthalpy change of the reaction ΔHrxn in J/mol. Insert your answer in kJ, but do not write kJ after the number. (Assume the density of the solution is 1.00 g/mL and the...
When 0.100 g Zn(s) combines with enough HCl to make a total of 55.0 mL solution...
When 0.100 g Zn(s) combines with enough HCl to make a total of 55.0 mL solution in a coffee cup calorimeter, all of the zinc reacts, which increases the temperature of the HCl solution from 23.0∘C to 24.5 ∘C: Zn(s) + 2HCl(aq) → ZnCl2(aq) + H2(g) Calculate the enthalpy change of the reaction ΔHrxn. (Assume the density of the solution is 1.00 g/mL and the specific heat capacity of solution is 4.184 J/g∘C.) in J/mol. (Enter answer in numerical form...
19. How much heat is liberated (in kJ) from 2.47E+2 g of silver when it cools...
19. How much heat is liberated (in kJ) from 2.47E+2 g of silver when it cools from 8.86E+1 °C to 2.57E+1 °C? The heat capacity of silver is 0.235 J g^{-1} °C^{-1} g−1°C−1. Note, "heat liberated" implies that the change in heat is negative. Enter a positive number 20. A sample of sand initially at 2.18E+1 °C absorbs 1.386E+3 J of heat. The final temperature of the sand is 6.7E+1 °C. What is the mass (in g) of sand in...
Table 1 shows the temperature-time data were recorded for the reaction between 50.0 mL of 1.18...
Table 1 shows the temperature-time data were recorded for the reaction between 50.0 mL of 1.18 M HA (a weak acid) and 50.0 mL of 0.98 M NH4OH, ammonium hydroxide (a weak base, also known as aqueous ammonia). The solutions were mixed after 60 s of approximately constant temperature readings of 24.20 oC. This is the initial temperature. Table 1: temperature-time Data Time (s) Temperature (oC) Time (s) Temperature (oC) 0 24.25 90 31.22 15 24.22 105 31.12 30 24.20...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT