Question

Calculate the freezing point and boiling point of aqueous 1.9 m CuCl3 given Kf for water...

Calculate the freezing point and boiling point of aqueous 1.9 m CuCl3 given Kf for water = 1.86 deg.C/m; Kb for water = 0.512 deg C/m. Assume theoretical value for i. Show work for credit.

Homework Answers

Answer #1

Freezing point

CuCl3 solution

molality (m) of solution = 1.9 m

Kf = 1.86 oC/m

i = 4 for CuCl3 [1Cu3+ + 3Cl-]

using,

dTf = iKfm

      = 4 x 1.86 x 1.9

      = 14.14 oC

Freezing point of solution = 0 - 14.14 = -14.14 oC

-----

Boiling point

CuCl3 solution

molality (m) of solution = 1.9 m

Kb = 0.512 oC/m

i = 4 for CuCl3 [1Cu3+ + 3Cl-]

using,

dTb = iKbm

      = 4 x 0.512 x 1.9

      = 3.90 oC

Boiling point of solution = 100 + 3.90 = 103.90 oC

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the boiling point of a solution of NaCl that has a freezing point of -0.3720...
Calculate the boiling point of a solution of NaCl that has a freezing point of -0.3720 °C. Assume complete dissociation. Kf water = 1.86 °C/m Kb water = 0.512 °C/m A. 100.1 °C B. 99.1 °C C. 101.1 °C D. 98.9 °C E. 105 °C
The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants...
The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants can be found here. Constants for freezing-point depression and boiling-point elevation calculations at 1 atm: Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride CCl4 29.8 –22.9 5.03 76.8 camphor C10H16O...
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.52 m SnCl4(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.52 m SnCl4(aq). Constants may be found here. vent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.99 m AgNO3(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.99 m AgNO3(aq). Constants may be found here. Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176
What is the normal boiling point of an aqueous solution that has a freezing point of...
What is the normal boiling point of an aqueous solution that has a freezing point of 1.04 oC. Kf for water 1.86 oC/m (oC-kg/mol). Hint: Calculate the molality from the freezing point depression and use it to calculate the normal boiling point.
an aqueous solution of sucrose freezes at -36 degrees C. what is its boiling point? (for...
an aqueous solution of sucrose freezes at -36 degrees C. what is its boiling point? (for water kb=0.512 degrees C/m and kf=1.86 degrees C/m
what is the freezing point of an aqueous 200m (NH4)PO4 salt solution? The Kf of water...
what is the freezing point of an aqueous 200m (NH4)PO4 salt solution? The Kf of water 1.86 C/m. Assume complete dissociation of the soluble salt.
To use freezing-point depression or boiling-point elevation to determine the molal concentration of a solution. The...
To use freezing-point depression or boiling-point elevation to determine the molal concentration of a solution. The freezing point, Tf, of a solution is lower than the freezing point of the pure solvent. The difference in freezing point is called the freezing-point depression, ΔTf: ΔTf=Tf(solvent)−Tf(solution) The boiling point, Tb, of a solution is higher than the boiling point of the pure solvent. The difference in boiling point is called the boiling-point elevation, ΔTb: ΔTb=Tb(solution)−Tb(solvent) The molal concentration of the solution, m,...
1.The freezing point of an aqueous solution prepared by adding 0.0100 mol of acetic acid to...
1.The freezing point of an aqueous solution prepared by adding 0.0100 mol of acetic acid to 100. g of water is -0.190 C. The freezing point depression of pure water is 0.000 C, and the freezing point depression constant for water is 1.86 C/m. What is the value for the van't Hoff factor for acetic acid in the aqueous solution. You must show work to support your response. 2. Which of the following aqueous solutions should have the lowest freezing...
1. Ethylene glycol [CH2(OH)CH2(OH)] is a common automobile antifreeze. Calculate the freezing point and boiling point...
1. Ethylene glycol [CH2(OH)CH2(OH)] is a common automobile antifreeze. Calculate the freezing point and boiling point of a solution containing 323 g of ethylene glycol and 1025 g of water. (Kb and Kf for water are 0.52°C/m and 1.86°C/m, respectively.) freezing point ___  °C boiling point ___°C 2. Calculate the molar mass of naphthalene, the organic compound in mothballs, if a solution prepared by dissolving 10.0 g of naphthalene in exactly 200 g of benzene has a freezing point 2.0°C below...