Question

If the potassium ion concentration outside the axon of a neuron was 10 mM, and the...

If the potassium ion concentration outside the axon of a neuron was 10 mM, and the membrane potential was −70 mV (inside of the axon negative relative to outside of the axon), what must be the concentration of potassium ions inside the axon? Assume no ion leakage (i.e., assume Donnan equilibrium conditions) and that other ions can be ignored. Assume also that the temperature is 37 °C.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the equilibrium potential of chloride ions in a mammalian neuron when the ion concentration...
What is the equilibrium potential of chloride ions in a mammalian neuron when the ion concentration inside the cell is 10 mM and their concentration outside the cell is 140 mM? Give your answer in mV, rounded to the nearest hundredth.
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5...
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5 mM) into a Red Blood Cell that contains 140 mM K+ at a temperature of 298 K. The transmembrane potential is about 58 mV, inside negative relative to outside. What is the free-energy change for transport of potassium ions into a Red Blood Cell?
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5...
Consider the transport of a potassium ion from the blood (where its concentration is about 4.5 mM) into a Red Blood Cell that contains 140 mM K+ at a temperature of 298 K. The transmembrane potential is about 58 mV, inside negative relative to outside. a) What type of transport must be used to move potassium ions across the Red Blood Cell outer membrane? (Simple diffusion, Facilitated diffusion, or active transport) b)In terms of the functioning of the beta-adrenergic pathway,...
Consider the transport of K+ from the blood (where its concentration is about 4 mM) into...
Consider the transport of K+ from the blood (where its concentration is about 4 mM) into an erythrocyte that contains 150 mM K+. inside negative relative to outside. What is the sign of this membrane and its meaning? What is the equilibrium potential of the potassium ion?
9. Assume that a single IPSP has a negative magnitude of -0.5 mV at the axon...
9. Assume that a single IPSP has a negative magnitude of -0.5 mV at the axon hillock and that a single EPSP has a positive magnitude of +0.5 mV. For a neuron with an initial membrane potential of -70 mV, the net effect of the simultaneous arrival of six IPSPs and two EPSPs would be to move the membrane potential to A. -72 mV B. -68 mV C. -71 mV D. -70 mV
Consider a cell at steady state. The intracellular Cl- concentration is 10 mM, while the extracellular...
Consider a cell at steady state. The intracellular Cl- concentration is 10 mM, while the extracellular Cl- concentration is 108 mM when the chloride channels are closed. The electrical potential inside the cell is -65 mV, and the external potential is 0 mV. Calculate the electrochemical potential difference across the membrane. Assume R = 8.3144 J/mol K and T = 37C. When the chloride channels open, in which direction will the Cl- ions move?
1) The concentration of K+ outside of a cell is 300 mM, and the concentration inside...
1) The concentration of K+ outside of a cell is 300 mM, and the concentration inside the cell is physiologically normal. The Vm for this cell will be: -80 mV close to +29 mV more positive than -80 mV more negative than -80 mV b and c
Assume a typical neuron with equilibrium potential for potassium, EK = -80mV and a resting potential...
Assume a typical neuron with equilibrium potential for potassium, EK = -80mV and a resting potential of -65mV. How would the resting membrane potential (Vm) of this neuron change if it were immersed in a bath containing a concentration of K+ 20% greater than normal K+ concentration?
1) The length of an axon is 10 mm, and its time constant is 4 msec....
1) The length of an axon is 10 mm, and its time constant is 4 msec. A voltage change at one end of the axon is 120 mV, which results in a change of about 10.35 mV at the opposite end after 4 msec. Given this information, what is the length constant of the neuron? ( Input answer in mm, rounded to the nearest whole number, without including the units.) 2) If the diameter of an axon is decreased, and...
During active transport in the neuron, the outside of the cell is _________________ and the inside...
During active transport in the neuron, the outside of the cell is _________________ and the inside is _______________. positive, negative more positive, less positive more negative, less negative negative, positive In active transport, _____________ provides the energy to move molecules against their concentration gradient. nucleus potassium sodium adenosine triphosphate ________________ proteins can change shape when moving substances across the membrane. Proteins that can be open or closed, based on different conditions, are called ___________. bypass proteins channel proteins selective proteins...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT