Question

Julie, John and Jacob are working on the formation of ammonia. The feed is a stoichiometric...

Julie, John and Jacob are working on the formation of ammonia. The feed is a stoichiometric ratrio of nitrogen and hydrogen at a particular T and P

Julie, who thought in round numbers of product, wrote: 1/2 N2 + 3/2 H2 --> NH3  

John, who thought in round numbers of nitrogen, wrote: N2 + 3 H2 --> 2NH3

Jacob, who thought in round numbers of hydrogen, wrote: 1/3 N2 + H2 --> 2/3 NH3

a) How will Johns and Jacobs standard state Gibbs energy of reaction compare to Julies?

b) How will Johns and Jacobs equilibrium constants be realted to Julies?

c) How will Johns and Jacobs equilbrium compositions be realted to Julies?

d) How will Johns and Jacobs reaction coordinate values be related to Julies?

Homework Answers

Answer #1

Julie

The equilibrium constant

The reaction coordinate

standard state Gibbs energy of reaction

John

The equilibrium constant

Where K is Julies equilibrium constant.

The reaction coordinate

Where Q is Julies reaction coordinate

Standard state Gibbs energy of reaction

Where is Julies standard state Gibbs energy of reaction

Jacob

The equilibrium constant

Where K is Julies equilibrium constant.

The reaction coordinate

Where Q is Julies reaction coordinate

Standard state Gibbs energy of reaction

Where is Julies standard state Gibbs energy of reaction

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react to form ammonia (NH3). The reactor is operated to achieve a fractional nitrogen conversion of 0.25. The exit stream from the reactor is fed to a separator, which separates unreacted nitrogen and hydrogen from the ammonia. (a) Draw and label a PFD for the process described above. [10%] (b) Write down a balanced stoichiometric equation for the reaction. [5%] (c) If the feed is...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react...
Nitrogen (N2) and hydrogen (H2) gases are fed to a reactor in stoichiometric quantities to react to form ammonia (NH3). The reactor is operated to achieve a fractional nitrogen conversion of 0.25. The exit stream from the reactor is fed to a separator, which separates unreacted nitrogen and hydrogen from the ammonia. (e) Assuming a basis of 100 tonne/day of ammonia production, determine the molar flow rates (moles/day) and the compositions (expressed in mole fractions) of all process streams. [40%]...
(a) Write a stoichiometric table for the reaction N2 + 3 H2  2 NH3 for...
(a) Write a stoichiometric table for the reaction N2 + 3 H2  2 NH3 for an isothermal, isobaric flow system with equimolar (or equal molar) feeds of N2 & H2. (b) If the entering total pressure is 16.4 atm and the entering temperature is 1727 oC, calculate the concentration of hydrogen and nitrogen entering the reactor. (c) Plot the gas composition (molar fractions) as a function of the conversion. Is there anything worth noticing? Can you explain it? What...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the...
hydrogen gas, H2, reacts with nitrogen gas,N2, to form ammonia gas , NH3 according to the equation... 3H2+N2 --->2NH3 1.how many grams of NH3 can be produced from 3.42 mol of N2 and excess H2 2. how many grams of H2 are needed to produce 14.93 g of NH3 ? 3. How many molecules (not moles) of NH3 are produced from 6.04*10^-4 g of H2 ?
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How...
Consider the following balanced reaction between hydrogen and nitrogen to form ammonia: 3H2(g) + N2(g)→2NH3(g) How many moles of NH3 can be produced from 24.0 mol of H2 and excess N2? Express the number of moles to three significant figures.
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an...
Ammonia (NH3) is produced in the Haber process by passing nitrogen (N2) with hydrogen over an iron catalyst at high temperature and pressure. N2(g) + 3 H2(g) --> 2 NH3(g) How many grams of ammonia can be prepared by reaction of 9.405 g of nitrogen with 2.413 g of hydrogen?
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce...
Nitrogen and hydrogen combine at a high temperature, in the presence of a catalyst, to produce ammonia. N2(g)+3H2(g)⟶2NH3(g) Assume 0.230 mol N2 and 0.758 mol H2 are present initially.PLEASE SHOW steps!! 1)After complete reaction, how many moles of ammonia NH3 are produced? 2)How many moles of H2 remain? 3)How many moles of N2 remain? 4)What is the limiting reactant? nitrogen or hydrogen
Ammonia is produced by reacting nitrogen and hydrogen. A feed stream consisting of 2.400% argon (by...
Ammonia is produced by reacting nitrogen and hydrogen. A feed stream consisting of 2.400% argon (by mole) and stoichiometric proportion of the reactants (N2 and H2) is fed into the system at the rate of 100 mol/min. The components enter a reactor, and then all ammonia is separated from the other components and leaves the process. The other components are recycled back to the feed stream, with a portion being purged from the system. The mole percentage of argon in...
Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1]...
Consider the formation of ammonia from nitrogen gas and hydrogen gas. Balance the equation below. [1] N2 +   [3] H2 → [2] NH3 If 5.07g of each reactant are used, what is the mass in grams of ammonia that will be produced?   ___ g What is the percent yield for this reaction if 5.31g of ammonia are actually obtained?   ___ %
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia....
Nitrogen and hydrogen combine at high temperature, in the presence of a catalyst, to produce ammonia. N2 (g) +3 H2 (g) -------------------> 2 NH3 (g) Assume 0.240 mol of N2 and 0.772 mol of H2 are present initially. 1) After complete reaction, how many moles of ammonia are produced? 2) How many moles of H2 remain? 3) How many moles of N2 remain? 4) What is the limiting reactant?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT