Question

Calculate the concentration in ppm of a K2CrO4 solution that has a %T of 77.17 in...

Calculate the concentration in ppm of a K2CrO4 solution that has a %T of 77.17 in a 4.50cm cell at 372nm, the molar absorptivity is 4,459.0 L mol-1 cm-1. [Report the result to two decimal places]

Homework Answers

Answer #1

There are two equations

A = 2 - log10 (%T) ........(1)

A = e c L ........(2)

A = absorption

e = molar absorptivity

c = concentration

L = path length

%T = transmission

Using

A = 2 - log10 (%T)

    = 2 - log (77.17)

     = 0.11255

Putting this value in equation (2)

A = e c L

c = A/eL

   = 0.11255/(4459.0x4.50)

    = 5.609 x 10-6 moles/Litre

Molecular mass of K2CrO4 = 194.2 g/mol

so, c = 5.609 x 10-6 mol/L x 194.2 g/mol

         = 1.089 x 10-3 g/L

         = 1.089 x 10-3 x 103 mg/L

          = 1.09 ppm          [1 ppm = 1 mg/L]

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.00-mL aliquot of a solution that contains 2.66 ppm Fe2+ is treated with an appropriate...
A 5.00-mL aliquot of a solution that contains 2.66 ppm Fe2+ is treated with an appropriate excess of thiocyanate and diluted to 50.0 mL. The molar absorptivity of a Fe2+-thiocyanate solution at 580 nm is 7000 L mol-1 cm-1. What is the absorbance of the above diluted Fe2+-thiocyanate solution at 580 nm in a 5.00-cm cell?
Calculate the %T of a solution that is measured in a 4.00cm cell and has a...
Calculate the %T of a solution that is measured in a 4.00cm cell and has a molar absorptivity of 431 M-1cm-1 , given that the solution is 0.02%w/v. The compound has a formula weight of 650.86 g/mol.
Assuming a molar absorptivity of 50,000 (Liters/mol cm) calculate what molarity you would need to get...
Assuming a molar absorptivity of 50,000 (Liters/mol cm) calculate what molarity you would need to get an absorbance of 1.0, using Beers Law. A =ε c l, where A is the absorbance; ε is the molar absorptivity in L/mol cm; c is the concentration in mol/liter; and l is the path length in cm, which, in our case, is 1.00 cm. Algebraically rearranging gives c = A/ε l =A/ε. B) Start with 20 mg of your dye. Calculate what morality...
The absorbance of a chemical solution is 0.5 at 400 nm. The concentration of the solution...
The absorbance of a chemical solution is 0.5 at 400 nm. The concentration of the solution is 50 mM. The pathlength of the cuvette is 1 cm. What is the molar absorptivity of the chemical at this wavelength?
1. A standard solution of 100 ppm (100 mg / L) of an organic compound was...
1. A standard solution of 100 ppm (100 mg / L) of an organic compound was analyzed and this has a maximum absorption band at 270 nm. A calibration curve was prepared from which the following data were obtained: Conc. (Ppm) 1 1,5 2 3 4 Absorbance 0.1282   0.1940 0.2615 0.3995 0.5422        If 2 ml of an unknown solution of this compound are diluted to 50 ml, an absorbance of 0.425 is obtained. a. Calculate the concentration...
A solution of tryptophan with a concentration of 30.0 mg/L was prepared and found to have...
A solution of tryptophan with a concentration of 30.0 mg/L was prepared and found to have an absorbance of A=0.794. Use the molecular weight of tryptophan to find the molar absorptivity of tryptophan. Assume a light path length of b =1.00 cm.
The molar absorptivity, ε, for the dye called xylenol blue (C23H22O5S, molar mass = 410.49 g...
The molar absorptivity, ε, for the dye called xylenol blue (C23H22O5S, molar mass = 410.49 g mol-1) was found by experiment to be 8.15×103 L mol-1 cm-1 at 424 nm. The percent transmittance of a 960 mL solution of xylenol blue was determined to be 30.9%. If the path length of the cell is 2.19 cm, determine the mass (in g) of xylenol blue present in the solution. Report your answer to 3 significant figures in scientific notation.
Calculate the molar concentration of a solution that has a measured absorbance of 0.635 using a...
Calculate the molar concentration of a solution that has a measured absorbance of 0.635 using a 1-cm pathlength cuvette and an extinction coefficient of 46,000.0 M-1cm-1.
Calculate the concentration of Co2 in rainwater at 25C using Henry's law. Assume that the water...
Calculate the concentration of Co2 in rainwater at 25C using Henry's law. Assume that the water is saturated with air that contains 350 ppm of CO2. The Henry's law constant for CO2 is KH=3.4X10-2 MOL/L-ATM at 15C . Express the result in molarity and ppm. Calculate the concentration of NO in rainwater at 25 C that is in equlibrium with polluted air where the NO concentration is 10 ppm. The Henry's law constant for No is Kh=2x10-4 mol/l-atm at 25C...
A 2.50-mL aliquot of a solution that contains 6.76 ppm iron(III) is treated with an appropriate...
A 2.50-mL aliquot of a solution that contains 6.76 ppm iron(III) is treated with an appropriate excess of KSCN and diluted to 50.0 mL. What is the absorbance of the resulting solution at 480 nm in a 2.50-cm cell? Assume a value of 7.00 x 103 for absorptivity constant.