Question

Au3+(aq) + 3e- --> Au(s) 1.498 V Ag+(aq) + e- --> Ag(s) 0.767 V Cu2+(aq) +...

Au3+(aq) + 3e- --> Au(s)

1.498 V

Ag+(aq) + e- --> Ag(s)

0.767 V

Cu2+(aq) + 2e- --> Cu(s)

0.342 V

Ni2+(aq) + 2e- -->Ni(s)

-0.257 V

Calculate the potential at 25ºC for the following cell:

Cu | Cu2+ [0.024M] || Ag+ [0.0048M] | Ag

Homework Answers

Answer #1

Cu | Cu2+ [0.024M] || Ag+ [0.0048M] | Ag


Cu(s) -------------------> Cu^2+ (aq) + 2e^-     E0 = -0.342v

2Ag+(aq) + 2e------------->2 Ag(s)                   E0 = 0.767v

---------------------------------------------------------------------------------------

Cu(s) + 2Ag^+ (aq) ---------> Cu^2+ (aq) + 2Ag(s) E0 cell = 0.425v

       n = 2

Ecell   = E0 cell -0.0592/n logQ

           = E0 cell -0.0592/n log[Cu^2+]/[Ag^+]^2

            = 0.425 -0.0592/2 log0.024/(0.0048)^2

            = 0.425-0.0296*3.0177   = 0.34V >>>>answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq)...
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq) + 2e- --> Cu(s) E cell = 0.34 V Pb2+(aq) + 2e- --> Pb(s) E cell = -0.13 V Fe2+(aq) + 2e- --> Fe(s) E cell = -0.44 V Al3+ (aq) + 3e- --> Al(s) E cell = -1.66 V Which of the above metals or metal ions will oxidize Pb(s)? a. Ag+(aq) and Cu2_(aq) b. Ag(s) and Cu(s) c. Fe2+(aq) and Al3+(aq) d....
Constants The following values may be useful when solving this tutorial. Constant Value E∘Cu 0.337 V...
Constants The following values may be useful when solving this tutorial. Constant Value E∘Cu 0.337 V E∘Ni -0.257 V R 8.314 J⋅mol−1⋅K−1 F 96,485 C/mol T 298 K Part A In the activity, click on the E∘cell and Keq quantities to observe how they are related. Use this relation to calculate Keq for the following redox reaction that occurs in an electrochemical cell having two electrodes: a cathode and an anode. The two half-reactions that occur in the cell are...
For the following cell at 25 Celsius: Ag+ +e—>Ag(s)=0.80V Cu2+ +2e—>Cu(s)=0.34V (Cu(s)|CuCl2(aq)||AgNO3(aq)|Ag(s)) 1) what is the...
For the following cell at 25 Celsius: Ag+ +e—>Ag(s)=0.80V Cu2+ +2e—>Cu(s)=0.34V (Cu(s)|CuCl2(aq)||AgNO3(aq)|Ag(s)) 1) what is the equilibrium constant under standard conditions? 2)what is the cell potential if the concentration of the AgNO3 solution was changed to 0.500 M, and all other conditions remained the same? 3)Calculate delta Grxn for part 2
Given: Ag+(aq) + e-→Ag(s)    E° = +0.799 V Cr3+(aq) + e-Cr2+(aq.) Eo= - 0.41 V Ni2+(aq)...
Given: Ag+(aq) + e-→Ag(s)    E° = +0.799 V Cr3+(aq) + e-Cr2+(aq.) Eo= - 0.41 V Ni2+(aq) + 2 e-→Ni(s) E° = -0.267 V Generate two voltaic cells using the above 3 reactions. Show the anode and cathode half-reactions and the overall cell reactions and calculate Eo cell values.
Calculate ?cell for the following concentration cell ? Cu(s) | Cu2+ (aq, 0.025M) ? Cu2+ (aq,...
Calculate ?cell for the following concentration cell ? Cu(s) | Cu2+ (aq, 0.025M) ? Cu2+ (aq, 0.30M) | Cu(s) Cu2+ (aq) + 2e- ? Cu(s) ? ?° = 0.340V A)0.0638 V B)-0.0734 V C)0.0734 V D)-0.0319 V E)0.0139 V
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell. The initial concentration...
A voltaic cell is constructed from an Ni2+(aq)−Ni(s) half-cell and an Ag+(aq)−Ag(s) half-cell. The initial concentration of Ni2+(aq) in the Ni2+−Ni half-cell is [Ni2+]= 1.00×10−2 M . The initial cell voltage is +1.12 V . a. By using data in Table 20.1 in the textbook, calculate the standard emf of this voltaic cell. b. Will the concentration of Ni2+(aq) increase or decrease as the cell operates? c. What is the initial concentration of Ag+(aq) in the Ag+−Ag half-cell?
Half-reaction E° (V) I2(s) + 2e- -----> 2I-(aq) 0.535V Cu2+(aq) + 2e- -----> Cu(s) 0.337V Cr3+(aq)...
Half-reaction E° (V) I2(s) + 2e- -----> 2I-(aq) 0.535V Cu2+(aq) + 2e- -----> Cu(s) 0.337V Cr3+(aq) + 3e- -----> Cr(s) -0.740V (1) The strongest oxidizing agent is: _____enter formula (2) The weakest oxidizing agent is: _____ (3) The weakest reducing agent is: _____ (4) The strongest reducing agent is: _____ (5) Will Cr3+(aq) oxidize I-(aq) to I2(s)? _____(yes)(no) (6) Which species can be reduced by Cu(s)? _____ If none, leave box blank.
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77 V Ni2+ (aq) + 2e- (aq) --> Ni(s) E = - 0.26 V Calculate the standard cell potential for the galvanic cell reaction given below and determine weather or not if the reaction is spontaneous under standard conditions. Ni2+ (aq) + 2 Fe2+ (aq) --> 2 Fe3+ (aq) + Ni(s)   SHOW ALL WORK
The following reactions take place in a galvanic cell: (i) Cu2+(aq)+ Ni (s)→ Cu(s) + Ni2+(aq)...
The following reactions take place in a galvanic cell: (i) Cu2+(aq)+ Ni (s)→ Cu(s) + Ni2+(aq) (ii) 2Ag+ (aq) +H2 (g) → 2Ag(s) +2H+ (aq) (iii) Cl2 (g) + Sn2+ (aq) → Sn4+ (aq) + 2Cl- (aq) (a) For each of the above spontaneous cell reactions, write the electrochemical cell using standard cell notation. (b) Use the standard reduction potentials below to evaluate EƟcell for the overall cell reaction taking place in (iii): Cl2(g) + 2e- → 2Cl- (aq) E...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s)...
Use the standard reduction potentials shown here to answer the questions. Reduction half-reaction E∘ (V) Cu2+(aq)+2e−→Cu(s) 0.337 2H+(aq)+2e−→H2(g) 0.000 A copper, Cu(s), electrode is immersed in a solution that is 1.00 M in ammonia, NH3, and 1.00 M in tetraamminecopper(II), [Cu(NH3)4]2+. If a standard hydrogen electrode is used as the cathode, the cell potential, Ecell, is found to be 0.073 V at 298 K. Part A Based on the cell potential, what is the concentration of Cu2+ in this solution?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT