Question

Calculate Keq for the following reaction.   CO + ½O2 ↔ CO2 Go = -257 kJ /...

Calculate Keq for the following reaction.

  CO + ½O2 ↔ CO2

Go = -257 kJ / mole of CO at 298 K  

Please show all work!

Homework Answers

Answer #1

Solution :-

CO + 1/2O2 --- > CO2

Go = -257 kJ/mol of the CO

Using the Go value we can calculate the K eq

Go = - RT ln K

R= gas constant (8.314 J/mol K)

T= Kelvin temperature

Lets convert the kJ to joules

-257 kJ/mol * (1000 J / 1 kJ) = -257000 J/mol

Now lets use this value in the formula

-257000 J/mol = - 8.314 J/mol K * 298 K * ln Keq

-257000 J/mol / (- 8.314 J/mol K * 298 K) = ln Keq

103.7 = ln Keq

Anti ln [103.7] = Keq

e^(103.7)= Keq

1.09*10^45 = K eq

Therefore the equilibrium constant for the reaction is 1.09*10^45

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At 3000K, Kp for the reaction CO2(g) ↔ CO(g) + ½O2(g) is 2.48. Calculate the reaction...
At 3000K, Kp for the reaction CO2(g) ↔ CO(g) + ½O2(g) is 2.48. Calculate the reaction quotient, Qp, when 0.010 moles of CO2, 0.010 moles od CO, and 0.010 moles of O2 are placed in 10.0L reaction vessel at 3000K.
Consider the reaction CO (g) + 0.5 O2 (g) -> CO2 (g). Compute the molar delta...
Consider the reaction CO (g) + 0.5 O2 (g) -> CO2 (g). Compute the molar delta H (in kJ/mol) for this reaction at 298 K and a pressure of 30 bar. Joule-Thomson coefficients and heat capacities are listed in the table below: Compound Cp (cal mol^-1 K^-1) Joule-thomson coefficient (K/bar) CO 6.3423 + 0.0018363 T 1.20 O2 6.148 + 0.003102 T 1.15 CO2 6.369 + 0.0101 T 1.10
Consider the reaction CO (g) + 0.5 O2 (g) -> CO2 (g). Compute the molar delta...
Consider the reaction CO (g) + 0.5 O2 (g) -> CO2 (g). Compute the molar delta H (in kJ/mol) for this reaction at 298 K and a pressure of 30 bar. Joule-Thomson coefficients and heat capacities are listed in the table below: Compound Cp (cal mol^-1 K^-1) Joule-thomson coefficient (K/bar) CO 6.3423 + 0.0018363 T 1.20 O2 6.148 + 0.003102 T 1.15 CO2 6.369 + 0.0101 T 1.10
Calculate Grxn at 298 K under the conditions shown below for the following reaction. 3 O2(g)...
Calculate Grxn at 298 K under the conditions shown below for the following reaction. 3 O2(g) ? 2 O3(g); ?G� = +326 kJ P(O2) = 5.2 atm, P(O3) = .14 atm Is this reaction spontaneous? Explain and show all work.
Consider the reaction, Ag2CO3(s) ↔ Ag2O(s) + CO2(g), for which the following data have been reported...
Consider the reaction, Ag2CO3(s) ↔ Ag2O(s) + CO2(g), for which the following data have been reported for the equilibrium constant (Keq) measured at four different temperatures:    T =          350 K                 400 K                 450 K                   500 K     Keq =      3.98 x 10-4         1.41 x 10-2        1.86 x 10-1           1.48 (a). Does this data indicate that the reaction is endothermic or exothermic? Give a rationale for your answer. (b). Can this data be used to calculate a value for the...
The steam reforming reaction can be described by the following two reactions: CH4 +H2O ↔ CO+3H2...
The steam reforming reaction can be described by the following two reactions: CH4 +H2O ↔ CO+3H2 CH4 +2H2O ↔ CO2 +4H2 Assume that both these reactions achieve equilibrium at 600 K. The equilibrium constants at this temperature for the two reactions are 0.41 and 1.09 respectively. Calculate the equilibrium composition if the starting composition is 5 moles of steam and 1 mole of methane at a pressure of 2 atm.
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in...
1. Given the values of ΔGfo given below in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of methane to form carbon dioxide and gaseous water. ΔGfo (CH4(g)) = -48 ΔGfo (CO2(g)) = -395 ΔGfo (H2O(g)) = -236 2. Given the values of So given below in J/mol K and of ΔHfo given in kJ/mol, calculate the value of ΔGo in kJ for the combustion of 1 mole of ethane to form carbon dioxide...
a) Calculate the equilibrium constant at 17 K for a reaction with ΔHrxno = 10 kJ...
a) Calculate the equilibrium constant at 17 K for a reaction with ΔHrxno = 10 kJ and ΔSrxno = -100 J/K. (Don't round until the end. Using the exponent enlarges any round-off error.) b) Calculate the equilibrium constant at 146 K for the thermodynamic data in the previous question (Notice that Keq is larger at the larger temperature for an endothermic reaction) c) Calculate the equilibrium constant at 43 K for a reaction with ΔHrxno = 10 kJ and ΔSrxno...
Calculate the equilibrium constant Keq for the following reaction at 25°C. (S° values in J/mol•K: N2(g),...
Calculate the equilibrium constant Keq for the following reaction at 25°C. (S° values in J/mol•K: N2(g), 191.5 ; O2(g), 205.0 ; Cl2(g), 223.0 ; NOCl(g), 261.6) N2(g) + O2(g) + Cl2(g) ↔ 2NOCl(g) ΔH° = 103.4 kJ a. 2.43 x 10−20 b. 8.82 x 10−29 c. 5.91 x 10−17 d. 2.01 x 10−10 e. 6.99 x 10−24
Consider the water–gas reaction, CO + H2O CO2 + H2 (a) Calculate the equilibrium constant, expressed...
Consider the water–gas reaction, CO + H2O CO2 + H2 (a) Calculate the equilibrium constant, expressed as log10 K, of the reaction at 298 K, (b) Calculate the equilibrium constant, expressed as log10 K, of the reaction at 1000 K