Question

The electron in a hydrogen atom is excited to the n = 6 shell and emits electromagnetic radiation when returning to lower energy levels. Determine the number of spectral lines that could appear when this electron returns to the lower energy levels, as well as the wavelength range in nanometers.

Answer #1

1. a. A photon is absorbed by a hydrogen atom causing an
electron to become excited (nf = 6) from the ground state electron
configuration. What is the energy change of the electron associated
with this transition?
b. After some time in the excited state, the electron falls from
the n = 6 state back to its ground state. What is the change in
energy of the electron associated with this transition?
c. When the electron returns from its excited...

A hydrogen atom is in its third excited state. The atom emits a
1.88E+3nm wavelength photon. Determine the maximum possible orbital
angular momentum of the electron after emission. Express your
answer as multiples of hbar.

A. Determine the wavelength of the light absorbed when an
electron in a hydrogen atom makes a transition from an orbital in
which n=2 to an orbital in which n=7. Express the wavelength in
nanometers to three significant figures.
B. An electron in the n=6 level of the hydrogen atom relaxes to
a lower energy level, emitting light of λ=93.8nm. Find the
principal level to which the electron relaxed. Express your answer
as an integer.
Can you explain it in...

Light is emitted from a hydrogen atom as an electron in the atom
jump from the n=9 orbit to the n=3 orbit.
What is the energy of the emitted photon in eV?
(b) What are the frequency and wavelength of the photon?
(c) In which frequency range (UV, visible, IR) is the emitted
electromagnetic radiation? Justify your answer.

A hydrogen atom is initially at n=2 excited state and then
absorbs energy 2.55 eV. The excited state is unstable, and it tends
to finally return to its ground state.
(a) How many possible wavelengths will be emitted as the atom
returns to its ground state? draw a diagram of energy levels to
illustrate answer
Answer: (number) ________
(b) Calculate the shortest wavelength emitted.
Answer: ________

A hydrogen atom (Z=1) is in the third excited state. It makes a
transition to a different state, and a photon is either emitted or
absorbed. Answer the following conceptual questions:
What is the quantum number of the third excited state?
When an atom emits a photon, is the final quantum number of the
atom greater than or less than the initial quantum number?
When an atom absorbs a photon, is the final quantum number of
the atom greater than...

A hydrogen atom is initially at n=2 excited state and then
absorbs energy 2.86 eV. The excited state is unstable, and it tends
to finally return to its ground state. 8%
(a) How many possible wavelengths will be emitted as the atom
returns to its ground state? (also draw a diagram of energy levels
to illustrate your answer)
Calculate the second shortest wavelength emitted.

6.
a) For a hydrogen atom, if the emission energy associated when
the electron starts at n = 8 is 2.65 x 10-20 J, at what
energy level does the photon finish at?
b) What type of electromagnetic radiation is associated with
this change

Q1)
Calculate the energy of an electron in the n =
2 level of a hydrogen atom.
Energy = _______Joules
Q2)
What would be the wavelength of radiation emitted from a
hydrogen atom when an electron moves from the n =
2 to n = 1energy level?
In what region of the spectrum does this radiation lie?
Wavelength = ________nm
Region = _________(ultraviolet or visible or infrared)

Astronomers have detected hydrogen atoms in interstellar space
in the n=746 excited state. Suppose an atom in this excited state
undergoes a transition from n=746 to n=731. What is the atoms
change in energy as the result of this transition? What is the
wavelength of radiation corresponding to this transition? What kind
of telescope would astronomers need in order to detect radiation of
this wavelength?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 3 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 5 minutes ago

asked 6 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 11 minutes ago

asked 15 minutes ago

asked 15 minutes ago

asked 18 minutes ago