Question

You need a strong acid for an experiment, and you are given a bottle that you...

You need a strong acid for an experiment, and you are given a bottle that you are told contains a strong acid at 15.0 M concentration. (The name of the acid on the label was rubbed off, so you are not sure of the identity of the acid.) You make a 0.1 M solution and you want to know if you can assume that the [H+] will be 0.1 M since the acid is a strong acid and thus should (so you have been told) completely dissociate. You see that the label on the bottle lists a pKa for the acid of -6.9. A pKa. You decide that you better calculate the relative error that will result when you make the assumption that a 0.1 M solution of the strong acid will result in a 0.1 M [H+] versus the concentration that you obtain when you properly treat the dissociation using the listed pKa value. Normally, the relative error is expressed as follows: Er = ((xi – xt)/xt) × 100; where xi is the value under the assumption that complete dissociation occurs and xt is the true or actual value obtained when the pKa of the acid is taken into account. Now, the units for an answer that is expressed as a percent could equivalently be stated as “parts per hundred”. Because the value of ((xi – xt)/xt) is likely to be a small number, I want you to multiply this value by 109 rather than 102 (as shown in the above equation). Thus, your answer will be in terms of parts per billion (ppb), and you should report your answer in these terms to the nearest ones

*For this problem, you can ignore the contribution of H+ ions due to the autoproteolysis of water.

Homework Answers

Answer #1

Let the acid is HA

The pKa = -6.9

Ka = 7.94 X 106

It will dissociate as

                   HA ---> H+ + A-

Initial          0.1 M        0      0

Change      -x            x        +x

Equilibrium    0.1-x       x      x

Ka = 7.94 X 106 =x2 / (0.1-x)

7.94 X 105 - 7.94 X 106x = x2

x = 0.0999999987

xi = 0.1

xt = x = 0.0999999987

Er = ((xi – xt)/xt) × 109 = 0.1 - 0.0999999987 X 109/ 0.0999999987 = 13 ppb

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You need a strong acid for an experiment, and you are given a bottle that you...
You need a strong acid for an experiment, and you are given a bottle that you are told contains a strong acid at 15.0 M concentration. (The name of the acid on the label was rubbed off, so you are not sure of the identity of the acid.) You make a 0.1 M solution and you want to know if you can assume that the [H+] will be 0.1 M since the acid is a strong acid and thus should...
You need a strong acid for an experiment, and you are given a bottle that you...
You need a strong acid for an experiment, and you are given a bottle that you are told contains a strong acid at 15.0 M concentration. (The name of the acid on the label was rubbed off, so you are not sure of the identity of the acid.) You make a 0.1 M solution and you want to know if you can assume that the [H+] will be 0.1 M since the acid is a strong acid and thus should...
Hydrochloric acid (HCl) is considered a strong acid. For many problems, it is convenient to assume...
Hydrochloric acid (HCl) is considered a strong acid. For many problems, it is convenient to assume that it completely dissociates to H+ ions and Cl− ions. But how good is this assumption? As a way to find out, calculate the relative error that results when one makes this assumption with a 0.1 M solution of HCl. Report your answer as a percent to one significant figure, and include the proper sign. Recall that relative error (in this context) is as...
To learn how to calculate ion concentrations in an aqueous solution of a strong diprotic acid....
To learn how to calculate ion concentrations in an aqueous solution of a strong diprotic acid. Sulfuric acid, H2SO4, is a strong acid. Its complete dissociation in aqueous solution is represented as H2SO4?H++HSO4? A HSO4? anion can dissociate further by HSO4??H++SO42? but the extent of dissociation is considerably less than 100%. The equilibrium constant for the second dissociation step is expressed as Ka2=[H+][SO42?][HSO4?]=0.012 Part A Calculate the concentration of H+ ions in a 0.010 M aqueous solution of sulfuric acid....
To learn how to calculate ion concentrations in an aqueous solution of a strong diprotic acid....
To learn how to calculate ion concentrations in an aqueous solution of a strong diprotic acid. Sulfuric acid, H2SO4, is a strong acid. Its complete dissociation in aqueous solution is represented as H2SO4?H++HSO4? A HSO4? anion can dissociate further by HSO4??H++SO42? but the extent of dissociation is considerably less than 100%. The equilibrium constant for the second dissociation step is expressed as Ka2=[H+][SO42?][HSO4?]=0.012 Part A Calculate the concentration of H+ ions in a 0.010 M aqueous solution of sulfuric acid....
You want to make 100 mL of 0.20 M Acetic Acid buffer with pH=4.0 You are...
You want to make 100 mL of 0.20 M Acetic Acid buffer with pH=4.0 You are given a stock solution of 1.0 M acetic acid and a bottle of sodium acetate salt (MW= 82 g/mol). The formula for the dissociation of acetic acid is shown here (CH3COOH <--> CH3COO- + H+) The henderson hasselbach equation is : pH=pKa +log [A-]/[HA]. What is the ratio of [A-]/[HA] when your buffer pH is 4.0? Determine the concentration of weak acid and conjugate...
Strong base is dissolved in 645 mL of 0.400 M weak acid (Ka = 4.91 ×...
Strong base is dissolved in 645 mL of 0.400 M weak acid (Ka = 4.91 × 10-5) to make a buffer with a pH of 4.11. Assume that the volume remains constant when the base is added. Calculate the pKa value of the acid and determine the number of moles of acid initially present. When the reaction is complete, what is the concentration ratio of conjugate base to acid? How many moles of strong base were initially added?
Strong base is dissolved in 545 mL of 0.200 M weak acid (Ka = 4.02 ×...
Strong base is dissolved in 545 mL of 0.200 M weak acid (Ka = 4.02 × 10-5) to make a buffer with a pH of 4.11. Assume that the volume remains constant when the base is added. a) Calculate the pKa value of the acid and determine the number of moles of acid initially present. b) When the reaction is complete, what is the concentration ratio of conjugate base to acid? c) How many moles of strong base were initially...
1. Strong base is dissolved in 565 mL of 0.400 M weak acid (Ka = 3.85...
1. Strong base is dissolved in 565 mL of 0.400 M weak acid (Ka = 3.85 × 10-5) to make a buffer with a pH of 4.07. Assume that the volume remains constant when the base is added. a. Calculate the pKa value of the scid and determine the number of moles of acid initially present. b. When the reaction is complete, what is the concentration ratio of conjugate base to acid? c. How many moles of strong base were...
33 . Strong base is dissolved in 565 L of 0.600 M weak acid (?a=3.30×10−5 M)(Ka=3.30×10−5...
33 . Strong base is dissolved in 565 L of 0.600 M weak acid (?a=3.30×10−5 M)(Ka=3.30×10−5 M) to make a buffer with a pH of 4.08. Assume that the volume remains constant when the base is added. HA(aq)+OH−(aq)⟶H2O(l)+A−(aq) Calculate the pKa value of the acid and determine the number of moles of acid initially present. When the reaction is complete, what is the concentration ratio of conjugate base to acid? How many moles of strong base were initially added?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT