Question

1. For the reaction: 2NOCl(g) 2NO(g) + Cl2(g), Kc = 1.6 x 10− 5 . What...

1. For the reaction: 2NOCl(g) 2NO(g) + Cl2(g), Kc = 1.6 x 10− 5 . What are the equilibrium concentrations of each species if 1.0 mole of NOCl is initially placed in an empty

2.0 L flask? 2. A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine: 2HI (g) H2(g) + I2(g): When the system comes to equilibrium at 425 °C, PHI = 0.708 atm and 2 2 P P H I = = 0.0960 atm. Calculate Kp for this reaction. Calculate Kc for the same reaction.

3.Consider the reaction CH2O (g) CO (g) + H2 (g) In an experiment, 0.050 mol of CH2O (g) was placed in empty 500. mL vessel. At equilibrium, the concentration of CH2O (g) was found to be 0.066 M. Calculate Kc for the reaction.

Homework Answers

Answer #1

1)

concentration of NOCl = 1.0 / 2.0 = 0.50 M

2 NOCl    --------------> 2 NO   +   Cl2

0.50                               0              0

0.50 - 2x                        2x            x

Kc = x (2x)^2 / (0.5 - 2x)^2

1.6 x 10^− 5 = 4 x^3 / (0.5 - 2x)^2

x = 9.74 x 10^-3

concentration of species :

[NO] = 0.0195 M

[Cl2] = 0.00974 M

[NOCl] = 0.481 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The equilibrium 2NO(g)+Cl2(g)⇌2NOCl(g) is established at 500 K. An equilibrium mixture of the three gases has...
The equilibrium 2NO(g)+Cl2(g)⇌2NOCl(g) is established at 500 K. An equilibrium mixture of the three gases has partial pressures of 9.50×10−2 atm , 0.174 atm , and 0.27 atm for NO, Cl2, and NOCl, respectively. Part A Calculate Kp for this reaction at 500.0 K. Express your answer using two significant figures. Part B If the vessel has a volume of 5.80 L, calculate Kc at this temperature. Express your answer using two significant figures. .
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.483 M.
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430 ° C. Calculate the equilibrium concentrations of H2, I2, and HI at 430 ° C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.445 M.
Consider the reaction between NO and Cl2 to form NOCl: 2NO(g)+Cl2(g)⇌2NOCl(g) A reaction mixture at a...
Consider the reaction between NO and Cl2 to form NOCl: 2NO(g)+Cl2(g)⇌2NOCl(g) A reaction mixture at a certain temperature initially contains only [NO]= 0.50 M and [Cl2]= 0.55. After the reaction comes to equilibrium, the concentration of NOCl is 0.35 M . Part A Find the value of the equilibrium constant (Kc) at this temperature. Express your answer using two significant figures. Kc=???
Be sure to answer all parts. Kc for the reaction of hydrogen and iodine to produce...
Be sure to answer all parts. Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.567 M. [H2] = M [I2] = M [HI] = M
The reaction 2NOCl(g) 2NO(g) + Cl2(g) has an equilibrium constant Kp (in terms of pressures) at...
The reaction 2NOCl(g) 2NO(g) + Cl2(g) has an equilibrium constant Kp (in terms of pressures) at 300 °C of 0.180. Calculate the concentration of NO that will be present at 300 °C in equilibrium with NOCl (at a concentration of 1.89×10-2 mol L-1) and Cl2 (at a concentration of 7.00×10-3 mol L-1). [NO] =    mol L-1
The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g)...
The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g) <--> 2HI(g) The value of Kp for the reaction is 69.0 at 730.0C. What is the equilibrium partial pressure of HI in a sealed reaction vessel at 730.0C if the initial partial pressures of H2 and I2 are both 0.1600 atm and initially there is no HI present?
Hydrogen iodide, HI, decomposes at moderate temperature according to the equation 2HI (g) H2 (g) +...
Hydrogen iodide, HI, decomposes at moderate temperature according to the equation 2HI (g) H2 (g) + I2 (g) When 4.00 mol HI was placed in a 5.00-L vessel at 458C, the equilibrium mixture was found to contain 0.442 mol I2. What is the value of Kc for the decomposition of HI at this temperature?
The equilibrium constant Kc for the reaction below is 82.3 at a certain temperature. H2(g) +...
The equilibrium constant Kc for the reaction below is 82.3 at a certain temperature. H2(g) + I2(g) double arrows 2HI (g) If you start with .355 M of hydrogen iodide, what will the concentrations of HI, H2, I2 be at equilbrium?
Hydrogen iodide decomposes according to the equation 2HI (g)<---> H2 (g) + I2 (g) for which...
Hydrogen iodide decomposes according to the equation 2HI (g)<---> H2 (g) + I2 (g) for which K= .0156 at 400 degrees celsius. If 0.550 mol of HI was injected into 2.00L reaction vessel at 400 degrees celsuis. Calculate the concentration of H2 at equilibrium?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT