Question

The activation energy (E*) for a reaction is 195 KJ. If the k for this reaction...

The activation energy (E*) for a reaction is 195 KJ. If the k for this reaction is 3.46 x 10-5/min at 35oC, what will the temperature be in OF when k is 1.5 x 10-3/min? If this was a second order reaction, what are the half life’s at each temperature?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 289 K? b.A certain reaction has an enthalpy of ΔH = 39 kJ and an activation energy of Ea = 51 kJ. What is the activation energy of the reverse reaction? c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of...
A certain reaction with an activation energy of 155 kJ/mol was run at 525 K and...
A certain reaction with an activation energy of 155 kJ/mol was run at 525 K and again at 545 K . What is the ratio of f at the higher temperature to f at the lower temperature?
A certain reaction with an activation energy of 125 kJ/mol was run at 455 K and...
A certain reaction with an activation energy of 125 kJ/mol was run at 455 K and again at 475 K . What is the ratio of f at the higher temperature to f at the lower temperature?
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at...
The activation energy, Ea for a particular reaction is 13.6 kj/mol. If the rate constant at 754 degrees celsius is 24.5/min at egat temperature in celsius will the rate constant be 12.7/min? r= 8.314j/mol • K
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate constant is 6.1×10−8 s−1. What is the value of the rate constant at 860.0 K? ?=_____ s−1 2.) A certain reaction has an activation energy of 47.01 kJ/mol. At what Kelvin temperature will the reaction proceed 7.50 times faster than it did at 357 K? ____ K 3.) Consider this reaction data. A⟶products T (K) k (s–1) 275 0.383 875 0.659 If you were...
what is the activation energy(Ea) of a first order reaction is the reaction rate constant(k) increases...
what is the activation energy(Ea) of a first order reaction is the reaction rate constant(k) increases from 0.0300 min to 0.500 min as the temperature increases from 20.0 C to 45.0 C?
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal...
The standard free energy of activation of a reaction A is 88.2 kJ mol–1 (21.1 kcal mol–1) at 298 K. Reaction B is ten million times faster than reaction A at the same temperature. The products of each reaction are 10.0 kJ mol–1 (2.39 kcal mol–1) more stable than the reactants. (a) What is the standard free energy of activation of reaction B? (b) What is the standard free energy of activation of the reverse of reaction A? (c) What...
A certain reaction has an activation energy of 65.39 kJ/mol. At what Kelvin temperature will the...
A certain reaction has an activation energy of 65.39 kJ/mol. At what Kelvin temperature will the reaction proceed 3.50 times faster than it did at 337 K?
A certain reaction has an activation energy of 64.28 kJ/mol. At what Kelvin temperature will the...
A certain reaction has an activation energy of 64.28 kJ/mol. At what Kelvin temperature will the reaction proceed 4.50 times faster than it did at 329 K?
A certain reaction has an activation energy of 53.03 kJ/mol. At what Kelvin temperature will the...
A certain reaction has an activation energy of 53.03 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 365 K?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT