Question

Part A Calculate the enthalpy change, ΔH, for the process in which 44.0 g of water...

Part A

Calculate the enthalpy change, ΔH, for the process in which 44.0 g of water is converted from liquid at 7.6 ∘C to vapor at 25.0 ∘C .

For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and s = 4.18 J/(g⋅∘C) for H2O(l)

Express your answer numerically in kilojoules.

Part B

How many grams of ice at -11.0 ∘C can be completely converted to liquid at 9.4 ∘C if the available heat for this process is 5.66×103 kJ ?

For ice, use a specific heat of 2.01 J/(g⋅∘C) and ΔHfus = 6.01 kJ/mol .

Express your answer numerically in grams.

Homework Answers

Answer #1

A)

the steps:

Q1 = liquid at 7.6°C to 25°C

Q2 = vaporization of liquid at 25°C

then

Q1 = m*C*(Tf-Ti) = 44*4.18*(25-7.6) = 3200.208 J

Q2 = m*LH = (44/18)(44000) = 107555.55 J

QTotal = 3200.208 + 107555.55 = 110755.758 J

Qtotal = 110.756 kJ

B)

mass of ice for:

Q1= ice to 0°C

Q2 = fusion of ice to water

Q3 = water at 0 to 9.4

Assume a basis of 1 gram f water

Q1 = 1*2.01*(0--11) = 22.11 J

Q2 = 1*6.01*1000/18 = 333.88J

Q3 = 1*4.18*(9.4-0) = 39.292 J

Qtotal = 22.11 +333.88 + 39.292

Qtotal = 395.282 J per gram...

Total E = 5.66*10^3 = 5660 J

Total mass = 5660 /39.292 = 144.0 g

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted from liquid at 9.4 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). How many grams of ice at -24.5 ∘C can be completely converted to liquid at 9.8 ∘C if the available heat for this process is 5.03×103 kJ ? For ice, use a specific heat of 2.01 J/(g⋅∘C) and...
Part A) Calculate the enthalpy change, ΔH, for the process in which 38.6 g of water...
Part A) Calculate the enthalpy change, ΔH, for the process in which 38.6 g of water is converted from liquid at 0.3 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). Part B) How many grams of ice at -24.6 ∘C can be completely converted to liquid at 9.4 ∘C if the available heat for this process is 4.04×103 kJ ? For ice, use a specific heat...
Calculate the enthalpy change, ΔH, for the process in which 46.8 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 46.8 g of water is converted from liquid at 0.7 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18 J/(g⋅∘C) for H2O(l).
Calculate the enthalpy change, ΔH, for the process in which 22.2 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 22.2 g of water is converted from liquid at 12.1 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18 J/(g⋅∘C) for H2O(l).
Calculate the enthalpy change, ΔH, for the process in which 43.7 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 43.7 g of water is converted from liquid at 9.3 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18 J/(g⋅∘C) for H2O(l).
Calculate the enthalpy change, ΔH, for the process in which 14.3 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 14.3 g of water is converted from liquid at 4.0 ∘C to vapour at 25.0 ∘C . For water, ΔvapH = 44.0 kJ mol−1 at 25.0 ∘C and Cs = 4.18 J g−1 ∘C−1 for H2O(l). Express your answer to three significant figures and include the appropriate units.
part A How much heat energy, in kilojoules, is required to convert 69.0 g of ice...
part A How much heat energy, in kilojoules, is required to convert 69.0 g of ice at −18.0 ∘C to water at  25.0 ∘C ? Part B How long would it take for 1.50 mol of water at 100.0 ∘C to be converted completely into steam if heat were added at a constant rate of 22.0 J/s ? Specific heat of ice: sice=2.09 J/(g⋅∘C) Specific heat of liquid water: swater=4.18 J/(g⋅∘C) Enthalpy of fusion (H2O(s)→H2O(l)): ΔHfus=334 J/g Enthalpy of vaporization (H2O(l)→H2O(g)):...
Calculate the amount of energy in kilojoules needed to change 207 g of water ice at...
Calculate the amount of energy in kilojoules needed to change 207 g of water ice at −10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J/(mol⋅∘C) Cm (water)=75.40 J/(mol⋅∘C) Cm (steam)=36.04 J/(mol⋅∘C) ΔHfus=+6.01 kJ/mol ΔHvap=+40.67 kJ/mol
Calculate the amount of energy in kilojoules needed to change 405 g of water ice at...
Calculate the amount of energy in kilojoules needed to change 405 g of water ice at −10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J/(mol⋅∘C) Cm (water)=75.40 J/(mol⋅∘C) Cm (steam)=36.04 J/(mol⋅∘C) ΔHfus=+6.01 kJ/mol ΔHvap=+40.67 kJ/mol
Calculate the amount of energy in kilojoules needed to change 225 g of water ice at...
Calculate the amount of energy in kilojoules needed to change 225 g of water ice at −10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J/(mol⋅∘C) Cm (water)=75.40 J/(mol⋅∘C) Cm (steam)=36.04 J/(mol⋅∘C) ΔHfus=+6.01 kJ/mol ΔHvap=+40.67 kJ/mol
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT