Question

A sample of asparagine was burned in the bomb calorimeter calibrated above. The following energy value...

A sample of asparagine was burned in the bomb calorimeter calibrated above. The following energy value was determined for the balanced reaction:

2 C4H8N2O3(s) + 13 O2(g) → 8 CO2(g) + 8 H2O(l) + 4 NO2(g) ΔrU = -3720 kJ

Calculate the enthalpy of formation for solid asparagine, ΔfH(C4H8N2O3, ΔfH(CO2, g) = -393.52 kJ/mol ΔfH(H2O, l) = -285.83 kJ/mo lΔfH(NO2, g) = +33.10 kJ/mol

Assume that ΔrU= ΔrH

The answer is -790 kJ/mol enthalpy of formation solid asparagine

1. What is the energy of combustion per kilogram of asparagine????

Homework Answers

Answer #1

any confusion please tell me

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in...
1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in the presence of excess oxygen. The total heat capacity of the calorimeter including water is 1.560 kJ/°C. The temperature of the calorimeter increases initially from 22.000˚C to 25.200˚C. Write the balanced combustion reaction: (diff=3) a. Calculate the enthalpy of combustion of quinone in kJ/mol. b. Determine the enthalpy of formation of quinone (in kJ/mol). Use Appendix C from your textbook as needed. Hint: Write...
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of...
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of oxygen to CO2(g) and H2O() in a constant-volume calorimeter at 25.00 °C. The temperature rise is observed to be 2.150 °C. The heat capacity of the calorimeter and its contents is known to be 9.455×103 J K-1. (a) Write and balance the chemical equation for the combustion reaction. Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or...
A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat...
A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat capacity of 5.65 kJ/°C. The temperature of the calorimeter and the contents increases from 25°C to 35°C. What is the heat of combustion per mole of ethanol? The molar mass of ethanol is 46.07 g/mol. C2H5OH (l) + 3 O2 (g) -----> 2 CO2 (g) + 3 H2O (g) ΔE = ?
6g of ethanol C2H5OH is burned completely at 298.15K in a bomb calorimeter, and the heat...
6g of ethanol C2H5OH is burned completely at 298.15K in a bomb calorimeter, and the heat produced is 180.39kJ a) calculate the enthalpy of combustion for ethanol under these conditions (in kJ/mol) b) using the result from part a), calculate the heat of formation for ethanol (in kJ/mol)
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
a) A calorimeter was calibrated with an electric heater, which supplied 22.5 kJ of energy as...
a) A calorimeter was calibrated with an electric heater, which supplied 22.5 kJ of energy as heat to the calorimeter and its water bath from 22.45OC to 23.97OC. What is the heat capacity of the calorimeter? (b) The enthalpy of combustion of benzoic acid, C6H5COOH, which is often used to calibrate calorimeters, is −3227 kJ/mol. When 1.453 g of benzoic acid was burned in a calorimeter, the temperature increased by 2.265OC. What is the heat capacity of the calorimeter?
In the laboratory a student burns a 1.17-g sample of dimethyl oxalate (C4H6O4) in a bomb...
In the laboratory a student burns a 1.17-g sample of dimethyl oxalate (C4H6O4) in a bomb calorimeter containing 1070. g water. The temperature increases from 24.60 °C to 27.70 °C. The specific heat capacity of water is 4.184 J g-1 °C-1. The combustion enthalpy is −1675 kJ/mol dimethyl oxalate. C4H6O4(s) + 7/2 O2(g) 4 CO2(g) + 3 H2O(l) ΔrH o = -1675 kJ/mol Calculate the heat capacity of the calorimeter. heat capacity of calorimeter = J/°C