Question

Calculate the de Broglie wavelength of helium nucleus (mass = 6.64 x 10^-27 kg) moving at...

Calculate the de Broglie wavelength of helium nucleus (mass = 6.64 x 10^-27 kg) moving at a velocity of 2.54 x 10^7 m/s

A. 6.57 x 10^-14 m
B. 3.96 x 10^-15 m
C. 8.68 x 10^-59 m
D. 4.55 x 10^8
E. 8.64 x 10^-16

Homework Answers

Answer #1

de Broglie wavelength   = h / m v

                                     = (6.625 x 10^-34 ) / (6.64 x 10^-27 x 2.54 x 10^7)

                                     = 3.96 x 10^-15 m

answer : B. 3.96 x 10^-15 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Calculate the de Broglie wavelength of a Helium atom moving at a speed of 50 m/s.
Calculate the de Broglie wavelength of a Helium atom moving at a speed of 50 m/s.
A He atom with a mass of 6.65×10−27 kg has a de Broglie wavelength of 4.3×10−12...
A He atom with a mass of 6.65×10−27 kg has a de Broglie wavelength of 4.3×10−12 m. What is the velocity of the He atom, in meters per second? Use 6.626×10−34kg m2s for Planck's constant. Your answer should include two significant figures.
Compare the de Broglie wavelength of a 0.015-kg ball moving at 40 m/s to that of...
Compare the de Broglie wavelength of a 0.015-kg ball moving at 40 m/s to that of an electron which has a speed of 0.0073c. Given: mass of electron = 9.11 x 10-31kg, speed of light = c = 3 x 108 m/s.
A. The mass of an electron is 9.11×10−31 kg. If the de Broglie wavelength for an...
A. The mass of an electron is 9.11×10−31 kg. If the de Broglie wavelength for an electron in a hydrogen atom is 3.31×10−10 m, how fast is the electron moving relative to the speed of light? The speed of light is 3.00×108 m/s. Calculate your answer as a percentage.The solution was .732% B. The mass of a golf ball is 45.9 g . If it leaves the tee with a speed of 70.0 m/s , what is its corresponding wavelength?...
Calculate the de Broglie wavelength of (a) a 0.613 keV electron (mass = 9.109 × 10-31...
Calculate the de Broglie wavelength of (a) a 0.613 keV electron (mass = 9.109 × 10-31 kg), (b) a 0.613 keV photon, and (c) a 0.613 keV neutron (mass = 1.675 × 10-27 kg).
Calculate the de Broglie wavelength of (a) a 0.942 keV electron (mass = 9.109 × 10-31...
Calculate the de Broglie wavelength of (a) a 0.942 keV electron (mass = 9.109 × 10-31 kg), (b) a 0.942 keV photon, and (c) a 0.942 keV neutron (mass = 1.675 × 10-27 kg).
An alpha particle with mass of 6.64 x10-27 kg and a charge of +2e is moving...
An alpha particle with mass of 6.64 x10-27 kg and a charge of +2e is moving horizontally with a velocity of 2.5 x 105 m/s as it goes through a small opening in the middle of two charged conducting plates. If the plates are spaced 15 cm apart, what is the strength of the electric field needed to stop the particle before it hits the opposite plate?
A particle α is the nucleus of a Helium atom. It has a mass m =...
A particle α is the nucleus of a Helium atom. It has a mass m = 6.64 x 〖10〗 ^ (- 27) kg and a charge of q = + 2e. Compare the electrical force with the gravitational. Between two alpha particles
Calculate the linear momentum, and the de Broglie wavelength of: a) a 0.75 kg bullet that...
Calculate the linear momentum, and the de Broglie wavelength of: a) a 0.75 kg bullet that is fired at a speed of 100 m / s, b) a non-relativistic electron with a kinetic energy of 2.0 eV, and c) a relativistic electron with a kinetic energy of 208 keV. !!!! # !! Remember that for relativistic particles: ? = ? ? + ? "? and ? = ?? = ? + ?" ?, the mass of the electron is 9.11...
An alpha particle of charge +2e and mass 6.64 × 10-27 kg is moving in the...
An alpha particle of charge +2e and mass 6.64 × 10-27 kg is moving in the +x direction at 1.79×106 m/s. It enters a region where the electric field is 1591 N/C in the -x direction. a. How far will the alpha particle travel before it comes to a stop? 2.33 * 10^-5 m Calculate the acceleration, then use the appropriate kinematic equation. b. How much time will elapse from when the alpha particle enters the electric field to when...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT