Question

when a 20.8g sample of CsBr was comcined with 115.0g water in a coffee cup calorimeter,...

when a 20.8g sample of CsBr was comcined with 115.0g water in a coffee cup calorimeter, the water temp decreased by 4.47 *C. based on this, how much heat energy was released when CsBr was dissolved? calculate the heat solution for CsBr in kj/mole. assume the specific heat is 4.184 J/g*C

Homework Answers

Answer #1

heat released(q) = m*s*DT

m = mass of solution = 115+20.8 = 135.8 g

s = specific heat of solution = 4.184 j/g.c

DT = 4.47 c

q = 135.8*4.184*4.47

= 2.54 kj

no of mol of CsBr dissolved = 20.8/ 212.81

                            = 0.098 mol
DHdiss = -q/n

       = -2.54/0.098

       = -25.92 kj/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the...
When 10.0 g KOH is dissolved in 100.0 g of water in a coffee-cup calorimeter, the temperature rises from 25.18 ˚C to 47.53 ˚C. Calculate the ∆Hrxn for the dissolution process. Assume that the solution has a specific heat capacity of 4.184 J/gK
A student determines the heat of dissolution of solid ammonium bromide using a coffee-cup calorimeter of...
A student determines the heat of dissolution of solid ammonium bromide using a coffee-cup calorimeter of negligible heat capacity. When 6.34 g of NH4Br(s) is dissolved in 119.00 g of water, the temperature of the solution drops from 25.00 to 22.76 °C. Based on the student's observation, calculate the enthalpy of dissolution of NH4Br(s) in kJ/mol. Assume the specific heat of the solution is 4.184 J/g°C. ΔHdissolution =  kJ/mol
The salt cesium bromide is soluble in water. When 9.28 g of CsBr is dissolved in...
The salt cesium bromide is soluble in water. When 9.28 g of CsBr is dissolved in 115.00 g of water, the temperature of the solution decreases from 25.00 to 22.72 °C. Based on this observation, calculate the enthalpy of dissolution of CsBr (in kJ/mol). Assume that the specific heat of the solution is 4.184 J/g °C and that the heat absorbed by the calorimeter is negligible. ΔHdissolution =  kJ/mol
A 9.07-g sample of NaOH is dissolved in 104.9 g of water in a coffee cup...
A 9.07-g sample of NaOH is dissolved in 104.9 g of water in a coffee cup calorimeter. The temperature of the solution rises from 15.49°C to 23.76°C. Calculate ∆Hrxn, in kJ for the dissociation of NaOH in water Assume that the heat capacity for the solution is 4.18 J/g°C.
An exothermic reaction liberates 7.58 kJ of heat in a coffee cup calorimeter containing 157 grams...
An exothermic reaction liberates 7.58 kJ of heat in a coffee cup calorimeter containing 157 grams of solution. The temperature of the solution in the calorimeter increases by 11.2°C. How much heat was absorbed by the calorimeter? Assume the specific heat of the solution is 4.184 J/g•°C. show work please a. 223J b. 7.36kj c. 657J d. 5820J e. -223J
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial...
In the following experiment, a coffee-cup calorimeter containing 100. mL of H2O is used. The initial temperature of the calorimeter is 23.0 ∘C. If 2.00 g of CaCl2 is added to the calorimeter, what will be the final temperature of the solution in the calorimeter? The heat of solution, ΔHsoln, of CaCl2 is −82.8 kJ/mol. The specific heat of water is CS=4.184 J/(g−K
When 7.56 g of NaCl is added to a coffee cup calorimeter, the water temperature changes...
When 7.56 g of NaCl is added to a coffee cup calorimeter, the water temperature changes by 4.1 ºC. If the heat of solution (the enthalpy change upon dissolving in water) is 3.8 kJ/mol, what mass of solution must be in the cup? Assume the specific heat capacity of the solution is the same as the specific heat capacity of water.
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8...
A student wishes to determine the heat capacity of a coffee-cup calorimeter. After she mixes 95.8 g of water at 62°C with 95.8 g of water, already in the calorimeter, at 18.2°C, the final temperature of the water is 35.0°C. Calculate the heat capacity of the calorimeter in J/K. Use 4.184 J/g°C as the specific heat of water.
A coffee cup calorimeter initially contains 125g of water at 24.2oC. 10.5g of potassium bromide also...
A coffee cup calorimeter initially contains 125g of water at 24.2oC. 10.5g of potassium bromide also at 24.2oC is added to the water. After the KBr dissolves the final temperature is 21.1oC. Calculate the enthalpy change for dissolving the salt in J/g and kJ/mol. Assume specific heat of solution is 4.18J/goC.
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g),...
A coffee-cup calorimeter initially contains 125 g water at 24.2 degrees celsius. Ammonium Nitrate (10.5 g), also at 24.2 degree celsius, is added to the water, and after the ammonium nitrate dissolves, the final temperature is 18.3 degrees celsius.What is the heat of solution of ammonium nitrate in kj/mol? Assume that the specific heat capacity of the solution is 4.18 J/Cg and that no heat is transferred to the surrounds or to the calorimeter.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT