Question

Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain...

Consider the following reaction:
CO(g)+2H2(g)⇌CH3OH(g)
A reaction mixture in a 5.25 −L flask at a certain temperature contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.64 g CH3OH

Part A

Calculate the equilibrium constant (Kc) for the reaction at this temperature.

Homework Answers

Answer #1

initial,
[CO] = mass of CO /(molar mass of CO * volume)
= 26.8/(28*5.25)
=0.179 M

[H2] = mass of H2 /(molar mass of H2 * volume)
= 2.35/(2*5.25)
=0.224 M

at equilibrium,
[CH3OH] = mass of CH3OH /(molar mass of CH3OH * volume)
= 8.64/(32*5.25)
=0.0514 M

CO(g) + 2H2(g) <------> CH3OH(g)
0.179      0.224            0     (initial)
0.179-x    0.224-2x         x (at equilibrium)

clealry, x = 0.0514 M

Kc = [CH3OH]/[CO][H2]^2
Kc =x/(0.179-x)(0.224-2x)^2
Kc= 0.0514/{(0.179-0.0514)(0.224 - 2*0.0514)^2}
Kc = 0.0514/(0.1276*0.01469)
   = 27.4

Answer: 27.4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain temperature initially contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.67 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 27.2 g CO and 2.32 g H2. At equilibrium, the flask contains 8.66 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.18 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.18 −L flask at a certain temperature initially contains 27.2 g CO and 2.32 g H2. At equilibrium, the flask contains 8.64 g CH3OH. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature.
1. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a...
1. Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.64 g CH3OH. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature. 2. Consider the following reaction: CO(g)+H2O(g)⇌CO2(g)+H2(g) Kp=0.0611 at 2000 K A reaction mixture initially contains a CO partial pressure of 1358 torr and a H2O partial pressure of 1764 torr at 2000 K....
CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature initially contains 27.1...
CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature initially contains 27.1 g CO and 2.34 g H2. At equilibrium, the flask contains 8.65 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.19-L flask at 500 K contains 9.02...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.19-L flask at 500 K contains 9.02 g of CO and 0.57 g of H2. At equilibrium, the flask contains 2.35 g of CH3OH. Calculate the equilibrium constant at this temperature.
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.21 −L flask at 500 K contains...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.21 −L flask at 500 K contains 9.04 g CO and 0.58 g of H2. At equilibrium, the flask contains 2.34 g CH3OH. Calculate the equilibrium constant at this temperature.
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.75 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.75 L flask at a certain temperature initially contains 0.764 g H2 and 97.1 g I2. At equilibrium, the flask contains 90.4 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Please explain!
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.63 L flask at a certain...
Consider the following reaction: H2(g)+I2(g)⇌2HI(g) A reaction mixture in a 3.63 L flask at a certain temperature initially contains 0.767 g H2 and 97.0 g I2. At equilibrium, the flask contains 90.6 g HI. Calculate the equilibrium constant (Kc) for the reaction at this temperature. Express your answer using two significant figures.
Consider the reaction: CO(g) + 2H2(g)=CH3OH(g) . An equilibrium mixture contained in a 1.0 L closed...
Consider the reaction: CO(g) + 2H2(g)=CH3OH(g) . An equilibrium mixture contained in a 1.0 L closed vessel was found to contain 0.105 moles of CO, 0.114 moles of H2, and 0.185 moles of CH3OH. A second equilibrium mixture in a second 500 mL vessel was found to contain 0.211 moles of CO and 0.0122 moles of CH3OH. How many moles of H2 were in the second equilibrium mixture?  
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT