Question

Ozone absorbs photons having wavelengths of 2.2 x 10^-7 m to 2.9 x 10^-7 m thus...

Ozone absorbs photons having wavelengths of 2.2 x 10^-7 m to 2.9 x 10^-7 m thus protecting organisms on earth's surface from the high E uv radiation. What are the frequency and energy of the LEAST energetic of these photons?

Homework Answers

Answer #1

Shorter the wavelength higher is the energy

So, 2.2×10^-7m is the high energy wavelength

Frequency, = c/

c = speed of light , 2.99×10^8m/s

= wavelength, 2.2×10^-7m

Therefore,

   = 2.99×10^8(m/s)/2.2×10^-7m

= 1.36×10^15s^-1

Energy, E = h

= 6.626×10^-34J.s × 1.36×10^15s^-1

= 9.01× 10^-19J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 W infrared laser emits photons with wavelengths of 2.0 x 10-6 m, and a...
A 200 W infrared laser emits photons with wavelengths of 2.0 x 10-6 m, and a 200 W ultraviolet laser emits photons with wavelengths of 7.0 x 10-8 m.  What is the energy of a single photon from each laser – which wavelength of photon has more energy?  Which laser is brighter (emits more photons every second)?  Blackboard question:  If both lasers are turned on at the same time, how many total photons are emitted every second?
1. Microwave radiation has wavelengths from 1.0×10-3 to 1.0 m, whereas the wavelength region for infrared...
1. Microwave radiation has wavelengths from 1.0×10-3 to 1.0 m, whereas the wavelength region for infrared radiation is 1.0×10-6 to 1.0×10-3 m. We can say that: (higher than, lower than, or the same) 1. The frequency of microwave radiation is infrared radiation. 2. The speed of microwave radiation is infrared radiation. 2.Infrared radiation has frequencies from 3.0×1011 to 3.0×1014 Hz, whereas the frequency region for microwave radiation is 3.0×108 to 3.0×1011 Hz. (higher than, lower than, or the same) We...
(a) A light beam of wavelength 7.0 x 10-7 m and intensity 435 W/m2 shines on...
(a) A light beam of wavelength 7.0 x 10-7 m and intensity 435 W/m2 shines on a target of area 3.8 m2. How many photons per second are striking the target? Answer: ______________.___x 10 photons/sec (b) A particle of matter is moving with a kinetic energy of 10 eV. Its de Broglie wavelength is 7.3 x 10-10 m. What is the mass of the particle? Answer: _________________.___x 10 kg (c) Two spaceships are traveling with a relative velocity of 2.9...
A. What is the energy in 10-3 eV of a photon that has a momentum of...
A. What is the energy in 10-3 eV of a photon that has a momentum of 6.13×10−29 kg ⋅ m/s ? B. What is the energy in 10-9 eV of a photon in a radio wave from an AM station that has a 1,506 kHz broadcast frequency? C. Calculate the frequency in 1020 Hz of a 0.571 MeV γ-ray photon. D. A certain molecule oscillates with a frequency of 1.73×1013 Hz. What is the approximate value of n for a...
1. A bat uses very high frequencies so: a. He will kill the insects he's hunting...
1. A bat uses very high frequencies so: a. He will kill the insects he's hunting b. We won't hear them c. The sound waves will be small compared to the insects d. The sound waves will be large compared to the insects e. He can tune in to KMET for the weather report 2. Bees see somewhat into the ultraviolet. This is because: a. They use radar b. They can see in the dark c. They evolved with a...