Question

If 339.2 g sample of iron is placed in 1.025 L of water initially at 22.761oC and both substances reach a final temperature of 27.488oC, what is the initial temperature (in oC) of the metal? Assume all heat is transferred between the water and the iron.

Answer #1

If 264.6 g sample of iron is placed in 1.005 L of water
initially at 19.884oC and both substances reach a final
temperature of 28.151oC, what is the initial temperature
(in oC) of the metal? Assume all heat is transferred
between the water and the iron.

An 65.73 g sample of aluminum is placed on a 56.35 g sample of
copper initially at 111.86oC. If the heat is only
transferred between the metals (with no loss to the surroundings)
and the final temperature of both metals is 36.38oC,
what is the inital temperature (in oC) of aluminum?

A metal sample weighing 72.1 g is placed in a hot water bath at
95.0 oC. The calorimeter contains 42.3 g of deoinized water. The
initial temperature of the water is 22.3 oC. The metal is
transferred to the calorimeter and the final temperature reached by
the water + metal is 32.2 oC.
A. Calculate ∆T for the water (Tfinal – Tinitial).
B. Calculate ∆T for the metal.
C. The specific heat of water is 4.18 J/goC. Calculate the
specific...

A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C)
is placed in a boiling water bath until the temperature of the
metal is 100.0*C. The metal is quickly transferred to 119.0g of
water at 25.0*C in a calorimeter (specific heat capacity of water =
4.18 J/g*C). Determine the final temperature of the water in the
calorimeter (3 significant figures).

A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is
placed in a boiling water bath until the temperature of the metal
is 100.0*C. The metal is quickly transferred to 119.0g of water at
25.0*C in a calorimeter (specific heat capacity of water = 4.18
J/g*C). Determine the final temperature of the water in the
calorimeter (3 significant figures).

A hot lump of 47.6 g of iron at an initial temperature of 50.8
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 37.8 g of iron at an initial temperature of 51.3
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 44.5 g of iron at an initial temperature of 74.5
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 46.0 g of iron at an initial temperature of 91.5
°C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to
reach thermal equilibrium. What is the final temperature of the
iron and water given that the specific heat of iron is 0.449
J/(g·°C)? Assume no heat is lost to surroundings.

A hot lump of 45.0 g of iron at an initial temperature of 68.2
degrees celsius is placed in 50.0 mL of H2O initially at 25.0
degrees celsius and allowed to reach thermal equillibrium. What is
the final temperature of the iron and water given that the specific
heat of iron is 0.449 J/(G x degrees celsius)? Assume no heat is
lost to surroundings.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 7 minutes ago

asked 8 minutes ago

asked 14 minutes ago

asked 16 minutes ago

asked 19 minutes ago

asked 23 minutes ago

asked 28 minutes ago

asked 50 minutes ago

asked 50 minutes ago

asked 58 minutes ago

asked 1 hour ago