Question

Experiments have shown the following reaction to be zero order with a rate constant = 3.10...

Experiments have shown the following reaction to be zero order with a rate constant = 3.10 10-1 M/sec. A → B + 2 C If you started with [A] = 3.000 M, how many minutes until the concentration of A = 2.442 M? I already found the answer to this to be 0.03 minutes but cannot figure out the second part below How many minutes until the concentration of C reaches equals 1.674 M?

Homework Answers

Answer #1

Ok then we know that for a zero order reaction the integrated law will be

[A] = [A]0 -kt

ok then we have [A]0 = 3.000 M and k= 3.10x10-1 M/s

we know from the stequiometry of the reaction than

[A] / t = 1/2( C /t) = k (The rate of dissapereance of A = 1/c times the rate of appareance of C)

Now assuming that [C]0= 0 then C = 1.647 M - 0 = 1.647 M

then k = 1/2 ( C /t)

Then we have  3.10x10-1 M/s = 1/2 (1.647 M /t)

t = 3.10x10-1 M/s * 2 / 1.647 M

t = 0.38 s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products) has a rate constant of 4.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A],...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k...
For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0 Part A A certain first-order reaction (A→products ) has a rate constant of 5.10×10−3 s−1 at 45 ∘C . How many minutes does it take for the concentration of the...
2A → B + C The above reaction is run and found to follow first order...
2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.56 M, what is the concentration after 133 seconds? 2A → B + C The above reaction is run and found to follow zero order kinetics with a rate constant of 1.30 x 10-3 M•sec-1. If the initial concentration of A is 1.51 M, what is the...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45...
Part A A certain first-order reaction (A→products) has a rate constant of 7.20×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. Answer: 6.42 min Part B A certain second-order reaction (B→products) has a rate constant of 1.35×10−3M−1⋅s−1 at 27 ∘Cand an initial half-life of 236 s . What is the concentration of the reactant B after...
A zero order reaction has a rate constant of 0.28 M s-1. How long will it...
A zero order reaction has a rate constant of 0.28 M s-1. How long will it take for the reactant to reach 30% of its original concentration?
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M...
The reactant concentration in a zero-order reaction was 6.00×10−2 M after 160 s and 1.50×10−2 M after 305 s . What is the rate constant for this reaction? (I got this answer 3.10*10^-4 M/s) What was the initial reactant concentration for the reaction described in Part A? The reactant concentration in a first-order reaction was 0.100 M after 40.0 s and 3.80×10−3M after 90.0 s . What is the rate constant for this reaction? (I got this answer 6.54*10^-2 1/s)...
A) 2A → B + C The above reaction is run and found to follow first...
A) 2A → B + C The above reaction is run and found to follow first order kinetics with a rate constant of 1.30 x 10-3 sec-1. If the initial concentration of A is 1.72 M, what is the concentration after 152 seconds? B) 2A → B + C The above reaction is run and found to follow second order kinetics with a rate constant of 1.30 x 10-3 M-1sec-1. If the initial concentration of A is 1.66 M, what...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. 1.) The reactant concentration in a zero-order reaction was 6.00×10−2M after 165 s and 3.50×10−2Mafter 385 s . What is the rate constant for this reaction? 2.)What was the initial reactant concentration for the reaction described in Part A? 3.)The reactant concentration in a first-order reaction was 6.70×10−2 M after 40.0 s and 2.50×10−3Mafter 95.0 s ....
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at...
Part A : A certain first-order reaction (A→products) has a rate constant of 9.30×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B : A certain second-order reaction (B→products) has a rate constant of 1.10×10−3M−1⋅s−1 at 27 ∘C and an initial half-life of 278 s . What is the concentration of the reactant B after one half-life?
a.) The rate constant for the reaction is 0.460 M–1·s–1 at 200 °C. A--> products. If...
a.) The rate constant for the reaction is 0.460 M–1·s–1 at 200 °C. A--> products. If the initial concentration of A is 0.00680 M. what is the concentration after 315 s? b.)The rate constant for this zero-order reaction is 0.0190 M·s–1 at 300 °C. A--> products. How long (in seconds) would it take for the concentration of A to decrease from 0.800 M to 0.240 M? c.)The rate constant for this second-order reaction is 0.520 M–1·s–1 at 300 °C. A-->...