Question

A constant-volume insulated container, initially at 25 ◦C, contains 0.1 mol of CO(g) and 0.05 mol...

A constant-volume insulated container, initially at 25 ◦C, contains 0.1 mol of CO(g) and 0.05 mol of O2(g). The gases explode, and 0.1 mol of CO2(g) is produced. The heat capacity of the container and its contents is 103 J/K. Assume that the gases are ideal, and that the standard heats of formation at 25 ◦C of CO(g) and CO2(g) are −110.5 kJ/mol and −393.5 kJ/mol, respectively. Find ∆U, ∆T, and ∆H for the system.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7...
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7 O2 0 205.2 CO2 -393.5 213.8 Part A Calculate ΔG∘rxn at 25∘C. Express your answer to one decimal place with the appropriate units. ΔG∘rxn = SubmitMy AnswersGive Up Incorrect; Try Again; 4 attempts remaining Your answer does not have the correct dimensions. Part B Determine whether the reaction is spontaneous at standard conditions. Determine whether the reaction is spontaneous at standard conditions. spontaneous nonspontaneous
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g)...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g) + O2 (g)  → CO2 (g) + H2O (l) (unbalanced) ΔHf C2H6 (g) = -84.7 kJ/mol; S C2H6 (g) = 229.5 J/K⋅mol; ΔHf ∘ CO2 (g) = -393.5 kJ/mol; S CO2 (g) = 213.6 J/K⋅mol; ΔHf H2O (l) = -285.8 kJ/mol; SH2O (l) = 69.9 J/K⋅mol; SO2 (g) = 205.0 J/K⋅mol
12 g of C(s), solid graphite, and partial pressure O2(g) - 100 bar are held in...
12 g of C(s), solid graphite, and partial pressure O2(g) - 100 bar are held in a thermally insulated, 1.0 L rigid container at 298K. Combustion of the graphite is initiated, and the combustion proceeds until all the graphite is consumed, CO2(g) is the only combustion product. Determine the final temperature of the O2/CO2 mixture, you may assume enthalpy of combustion is independent of pressure, heat capacity is entirely that of the contents of container (container does not contribute to...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g...
An insulated cylinder fitted with a movable piston to maintain constant pressure initially contains 100 g of ice at -10 C. Heat is supplied to the contents at a constant rate by a 100 W heater. Make a graph showing temperature of the cylinder contents as a function of time starting at t = 0, when the temperature is -10 C and ending when the temperature is 110 C. ( c = 2.0 kJ/ kg K for specific heat of...
One mole of either carbon monoxide or benzene are completely combusted with oxygen at constant temperature...
One mole of either carbon monoxide or benzene are completely combusted with oxygen at constant temperature and pressure (298 K and 1 atm) to generate CO2 and H2O. Assume all substances are ideal gases for calculating volume changes. a. Write out balanced combustion reactions for each reaction. b. Calculate the change in entropy for the system for each reaction, using the table, below. c. Use the enthalpies of formation to calculate the heat lost or gained during this reaction. d....
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of...
A sample of solid azulene (C10H8) that weighs 0.4925 g is burned in an excess of oxygen to CO2(g) and H2O() in a constant-volume calorimeter at 25.00 °C. The temperature rise is observed to be 2.150 °C. The heat capacity of the calorimeter and its contents is known to be 9.455×103 J K-1. (a) Write and balance the chemical equation for the combustion reaction. Use the lowest possible coefficients. Use the pull-down boxes to specify states such as (aq) or...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice...
An insulated container has 2.00kg of water at 25◦C to which an unknown amount of ice at 0◦C is added. The system comes to an equilibrium temperature of 20◦C. The heat capacity for water is 4190 J and the heat of fusion for ice is kg·K kJ LF =334kg. (a) Determine the amount of ice that was added to the water. (b) What is the change in the entropy associated with the ice melting? (c) What is the change in...
The gas methane, CH4(g), can be used in welding. When methane is burned in oxygen, the...
The gas methane, CH4(g), can be used in welding. When methane is burned in oxygen, the reaction is: CH4(g) + 2 O2(g)------>CO2(g) + 2 H2O(g)      (a) Using the following data, calculate ^H° for this reaction. ^H°f kJ mol-1:   CH4(g) = -74.6 ; CO2(g) = -393.5 ; H2O(g) = -241.8 ^H° = _____ kJ (b) Calculate the total heat capacity of 1 mol of CO2(g) and 2 mol of H2O(g), using CCO2(g) = 37.1 J K-1 mol-1 and CH2O(g) =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT