Question

Constants Fe2+ + 2e− = Fe(s) E º =−0.44 V; O + 4H+ + 4e− 2H2O...


Constants Fe2+ + 2e− = Fe(s) E º =−0.44 V; O + 4H+ + 4e− 2H2O E º =−1.23 V

2)In acid solution, the half cells Fe2+(aq) | Fe(s) and O2(g) | H2O are linked to create a spontaneous, galvanic cell.

a) Calculate Eºcell _____________
b) Which reaction occurs at the cathode _______________________________
c) Write the overall reaction for the cell ___________________________________
d) Write the shorthand notation for the anode (anode || cathode).

Homework Answers

Answer #1

Fe 2+ + 2 e Fe(s)   E º =−0.44 V;

O 2 + 4 H+ + 4 e 2 H2O E º =−1.23 V

Given reactions are reduction reactions as their is gain of electrons . The significance of electrode potential is that element having more positive value of reduction potential have more tendency to undergo reduction.

If we compare reduction potentials , it is clear that Fe will reduce and H2O will oxidise .  

The cell will be : H2O (l) I O 2(g) Il Fe 2+(aq) l Fe(s)

Reaction at anode :2 H2O (l)  O 2 (g) + 4 H+(aq) + 4 e

Reaction at cathode :  2 Fe 2+(aq) + 4 e2 Fe(s)

Overall reaction :   2 Fe 2+(aq) + 2 H2O (l)  O 2(g) + 4 H+(aq) + 2 Fe (s)

E 0cell = E 0cathode - E 0anode = -0.44 - (-1.23) =0.79 V

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a galvanic cell consisting of: Fe2++2e−Fe2++2e- →→ FeFe -0.44 Al3++3e−Al3++3e- →→ AlAl -1.66 Write the...
Consider a galvanic cell consisting of: Fe2++2e−Fe2++2e- →→ FeFe -0.44 Al3++3e−Al3++3e- →→ AlAl -1.66 Write the reaction occurring at the anode: Use spaces only before and after a plus sign. For example, the reaction: Fe2++2e−→FeFe2++2e-→Fe would be entered as: Fe^2+ + 2e^- →→ Fe →→ Write the reaction occurring at the cathode: →→ Write the reaction for the galvanic cell: l  lI  l Calculate the E0cell for the cell.
For the following reactions and given standard reduction potentials O2(g) + 4H+(aq) + 2Cu(s)  2Cu2+(aq)...
For the following reactions and given standard reduction potentials O2(g) + 4H+(aq) + 2Cu(s)  2Cu2+(aq) + 2H2O(l) O2(g) + 4H+(aq) + 4e-  2H2O(l)       E° = 1.23 V Cu2+ + 2e-  Cu(s)    E° = 0.34 V a. Calculate E°cell b. Calculate ΔG° at 254 K
Combine the two half-reactions that give the spontaneous cell reaction with the smallest E∘. Fe2+(aq)+2e−→Fe(s) E∘=−0.45V...
Combine the two half-reactions that give the spontaneous cell reaction with the smallest E∘. Fe2+(aq)+2e−→Fe(s) E∘=−0.45V I2(s)+2e−→2I−(aq) E∘=0.54V Sn4+(aq)+2e−→Sn2+(aq) E∘=0.15V Write a balanced equation for the cell reaction. Express your answer as a chemical equation. Identify all of the phases in your answer.
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77 V Ni2+ (aq) + 2e- (aq) --> Ni(s) E = - 0.26 V Calculate the standard cell potential for the galvanic cell reaction given below and determine weather or not if the reaction is spontaneous under standard conditions. Ni2+ (aq) + 2 Fe2+ (aq) --> 2 Fe3+ (aq) + Ni(s)   SHOW ALL WORK
Consider the half-cell reaction: O2(g) + 4H+ (aq) + 4e- → 2H2O If all the stoichiometric...
Consider the half-cell reaction: O2(g) + 4H+ (aq) + 4e- → 2H2O If all the stoichiometric coefficients are multiplied by a factor of 2, how are the following parameters changed (make sure to justify your answer): (a) the number of electrons (b) the reaction quotient (c) the standard Gibbs free energy (ΔG θ ) (d) the cell potential (E) (e) the standard cell potential (E θ )
Which species is the strongest oxidizing agent under standard conditions? Half-reaction Eo (V) MnO2(s) + 4H+...
Which species is the strongest oxidizing agent under standard conditions? Half-reaction Eo (V) MnO2(s) + 4H+ (aq) + 2e– → Mn2+(aq) + 2H2O(l) 1.22 V SnO2(s) + 2H2O() + 4e– → Sn(s) + 4OH– (aq) -0.95 V Hg2SO4(s) + 2e– → 2Hg(l) + SO42 – (aq) +0.61 V Cr(OH)3(s) + 3e– → Cr(s) + 3OH– (aq) –1.48 V Mn2 2+ + 2e- ⇌ Mn2 -1.18 A. MnO2 B. Sn C. Hg2SO4 D. Cr E. Mn2 2+
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq)...
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq) + 2e- --> Cu(s) E cell = 0.34 V Pb2+(aq) + 2e- --> Pb(s) E cell = -0.13 V Fe2+(aq) + 2e- --> Fe(s) E cell = -0.44 V Al3+ (aq) + 3e- --> Al(s) E cell = -1.66 V Which of the above metals or metal ions will oxidize Pb(s)? a. Ag+(aq) and Cu2_(aq) b. Ag(s) and Cu(s) c. Fe2+(aq) and Al3+(aq) d....
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential Cl2(g)+2e−→...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential Cl2(g)+2e−→ 2Cl−(aq)   E0red = +1.359V NO−3(aq)+4H+(aq)+3e−→ NO(g)+2H2O(l)   E0red = +0.96V Answer the following questions about this cell. Write a balanced equation for the half-reaction that happens at the cathode.   Write a balanced equation for the half-reaction that happens at the anode.   Write a balanced equation for the overall reaction that powers the cell. Be sure the reaction is spontaneous as written.   Do you have enough...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential N2(g)+4H2O(l)+4e−→...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential N2(g)+4H2O(l)+4e−→ N2H4(aq)+4OH−(aq) E0red = −1.16V Zn+2(aq)+2e−→ Zn(s) E0red = −0.763V Answer the following questions about this cell. Write a balanced equation for the half-reaction that happens at the cathode.   Write a balanced equation for the half-reaction that happens at the anode.   Write a balanced equation for the overall reaction that powers the cell. Be sure the reaction is spontaneous as written.   Do you have enough...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s) Standard Reduction Potentials...
Part A Calculate the equilibrium constant at 25 ∘C for the reaction Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s) Standard Reduction Potentials at 25 ∘C Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V Ag+(aq)+e−→Ag(s) E∘= 0.80 V