Question

33.53 g of sucrose solution with a 24.9 % weight of sucrose were prepared at the...

33.53 g of sucrose solution with a 24.9 % weight of sucrose were prepared at the lab by a student. Considering temperature = 20oC, what should be the the expected measured volume (mL) of that solution. Use only 1 digit after the decimal place.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solution is prepared by dissolving 13.63 g of sucrose (C12H22O11) in 612 g of water....
A solution is prepared by dissolving 13.63 g of sucrose (C12H22O11) in 612 g of water. The final volume of the solution is 635 mL. For this solution, calculated the concentration in each unit indicated below. a.Molarity b.Molality c.Mole fraction of glucose
a) A sucrose solution is prepared to a final concentration of 0.160 M . Convert this...
a) A sucrose solution is prepared to a final concentration of 0.160 M . Convert this value into terms of g/L, molality, and mass % (molecular weight, MWsucrose = 342.296 g/mol ; density, ρsol′n = 1.02 g/mL ; mass of water, mwat = 965.2 g ). Note that the mass of solute is included in the density of the solution. Express the concentrations in grams per liter, molality, and mass percent to three significant figures separated by commas. Hints Sucrose...
The initial temperature of 100.86 g of 0.1 M HCl solution in a calorimeter was 24.9...
The initial temperature of 100.86 g of 0.1 M HCl solution in a calorimeter was 24.9 °C. After a student added 99.98 g of 0.1 M NaOH to the calorimeter and mixed well, the final temperature was 34.5 °C. How much heat was released by the neutralization reaction? Assume the specific heat of the mixture to be 1 cal/g·°C. Express your answer in kcal.
A solution is prepared by dissolving 80.0 g of sucrose, C12H22O11, in 250. g of water...
A solution is prepared by dissolving 80.0 g of sucrose, C12H22O11, in 250. g of water at 25 °C. What is the vapour pressure of the solution if the vapour pressure of water at 25 °C is 23.76 mmHg?
A) A solution is prepared by dissolving 50.4 g sucrose (C12H22O11) in 0.332 kg of water....
A) A solution is prepared by dissolving 50.4 g sucrose (C12H22O11) in 0.332 kg of water. The final volume of the solution is 355 mL. For this solution, calculate the molarity. Express the molarity in units of moles per liter to three significant figures. B) Calculate the molality. Express the molality in units of moles per kilogram of solvent to three significant figures. C) Calculate the percent by mass.Express the percent by mass to three significant figures. D) Calculate the...
Assume the sucrose solution was at a 50% (w/v) solution and 5 liters were made. (assume...
Assume the sucrose solution was at a 50% (w/v) solution and 5 liters were made. (assume 1 mL = 1g) A) What is the initial molatiy of this solution? B) The sucrose is hydrolyzed. What is the molaity of the new solution in the hydrolyzed sucrose solution?
A solution of F– is prepared by dissolving 0.0980 ± 0.0005 g of NaF (molecular weight...
A solution of F– is prepared by dissolving 0.0980 ± 0.0005 g of NaF (molecular weight = 41.989 ± 0.001 g/mol) in 157.00 ± 0.09 mL of water. Calculate the concentration of F– in solution and its absolute uncertainty.
A solution of F– is prepared by dissolving 0.0709 ± 0.0004 g of NaF (molecular weight...
A solution of F– is prepared by dissolving 0.0709 ± 0.0004 g of NaF (molecular weight = 41.989 ± 0.001 g/mol) in 154.00 ± 0.06 mL of water. Calculate the concentration of F– in solution and its absolute uncertainty.
QUESTION 10 A solution is prepared by dissolving 40.0 g of sucrose (C12H22O11, MM = 342...
QUESTION 10 A solution is prepared by dissolving 40.0 g of sucrose (C12H22O11, MM = 342 g/mol) in 250. g of H2O at 298 K. What is the vapor pressure of the solution if the vapor pressure of water at 298 K is 23.76 mm Hg? 0.198 mm Hg 20.5 mm Hg 23.6 mm Hg 28.0 mm Hg
1. Calculate the formula weight of the Al [C9H6ON]3 complex that will be formed in this...
1. Calculate the formula weight of the Al [C9H6ON]3 complex that will be formed in this experiment. 2. A student performed a gravimetric analysis of an unknown solid sample by precipitating the aluminum using 8-HQ, forming the Al(HQ)3 complex as you will do in this lab. If the precipitate, after subtracting the crucible and microfilter, weighed 1.2176 g, what is the mass (in g) of aluminum in the precipitate? 3. Now suppose this student told you that she had sissolved...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT