Question

(a) The work function for Cesium is 3.43 x 10-19 J. What is the kinetic energy...

(a) The work function for Cesium is 3.43 x 10-19 J. What is the kinetic energy of an electron liberated by radiation of 550 nm?

(b) How many electrons are generated if the total energy absorbed at 550 nm is 1.00 x 10-3 J?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The binding energy for electrons in cesium is 3.43 x 10^-19 J. What colors of light...
The binding energy for electrons in cesium is 3.43 x 10^-19 J. What colors of light will eject electrons from cesium . Answer: yellow and shorter wavelenghts. How do I know. Also, If the uncertainty in the position of sodium atom were 10^-4 meter what is the uncertainty in its speed. Please explain. I'm unsure of what is meant by uncertainty.
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is...
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is irradiated with light of different wavelengths, and the maximum kinetic energy of ejected electrons is measured. Part A: What is the maximum kinetic energy of ejected electron when 390-nm light is used? Part B:vWhat is the maximum electron speed when 390-nm light is used? Part C: Does 750-nm light have enough energy to eject an electron from the metal?
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
The work function of silicon is 7.24 × 10–19 J. Calculate the velocity of the emitted...
The work function of silicon is 7.24 × 10–19 J. Calculate the velocity of the emitted electron if the surface is irradiated with UV radiation of wavelength 240 nm. If lower velocity electrons were required, should a material with higher or lower work function be used? Explain.
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
The work function of a material is the minimum energy required to emit an electron from...
The work function of a material is the minimum energy required to emit an electron from the material. The work function of Ag is 7.59 x 10^ -19 J a) If I'm in Australia (where a lot more UV light makes it through the depleted ozone layer ...) and I'm wearing silver earrings when the sun comes out irradaiting me with light that has a wavelength of 185 nm, will electrons be emitted from the earrings? b) If radiation hits...
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons...
It requires a photon with a minimum energy of 4.41 ✕ 10-19 J to emit electrons from sodium metal. c) If sodium is irradiated with light of 389 nm, what is the maximum possible kinetic energy of the emitted electrons?(answer in J) (d) What is the maximum number of electrons that can be freed by a burst of light (λ = 389 nm) whose total energy is 1.20 µJ? (answer in electrons)
The work function of a material is the minimum energy required to emit an electron from...
The work function of a material is the minimum energy required to emit an electron from the material. The work function of Ag is 7.59*10^-19 J a) If I'm in Australia (where a lot more UV light makes i through the depleted ozone layer...) and I'm wearing silver earrings, when the sun comes out irradiating me with light that has a wavelength of 185 nm, will electrons be emitted from my earrings? b) If radiation hits me that has more...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 507 nm. What is the work function W0 of this metal? Express your answer in electron volts. In the Compton effect, an X-ray photon of wavelength 0.16 nm is incident on a stationary electron. Upon collision with the electron, the scattered X-ray photon continues to travel in...
Light of wavelength 420 ?? strikes a cesium target with work function 2.1 ?? in a...
Light of wavelength 420 ?? strikes a cesium target with work function 2.1 ?? in a photoelectric experiment. Do we expect electrons to be ejected from the target? If yes, what is the maximum kinetic energy of the ejected electrons? If no, what energy is missing in order to free electrons?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT