Question

Use Hess's law to determine ΔH∘ for the reaction CO(g)+12O2(g)→CO2(g), given that C(graphite)+12O2(g)→CO(g), ΔH∘=−110.54kJ/mol C(graphite)+O2(g)→CO2(g), ΔH∘=−393.51kJ/mol

Use Hess's law to determine ΔH∘ for the reaction CO(g)+12O2(g)→CO2(g), given that C(graphite)+12O2(g)→CO(g), ΔH∘=−110.54kJ/mol C(graphite)+O2(g)→CO2(g), ΔH∘=−393.51kJ/mol

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold...
Use Hess's Law to calculate the enthalpy of reaction, ΔH rxn, for the reaction in bold below given the following chemical steps and their respective enthalpy changes. Show ALL work! 2 C(s) + H2(g) → C2H2(g) ΔH°rxn = ? 1. C2H2(g) + 5/2 O2(g) → 2CO2 (g) + H2O (l) ΔH°rxn = -1299.6 kJ 2. C(s) + O2(g) → CO2 (g) ΔH°rxn = -393.5 kJ 3. H2(g) + ½ O2(g) → H2O (l) ΔH°rxn = -285.8 kJ
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7...
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7 O2 0 205.2 CO2 -393.5 213.8 Part A Calculate ΔG∘rxn at 25∘C. Express your answer to one decimal place with the appropriate units. ΔG∘rxn = SubmitMy AnswersGive Up Incorrect; Try Again; 4 attempts remaining Your answer does not have the correct dimensions. Part B Determine whether the reaction is spontaneous at standard conditions. Determine whether the reaction is spontaneous at standard conditions. spontaneous nonspontaneous
Using Hess's Law and some or all of the equations (1) - (4) below calculate ΔH...
Using Hess's Law and some or all of the equations (1) - (4) below calculate ΔH at 25C for coal gasification: 2 C(coal) + 2 H2O(g)  CH4(g) + CO2(g) ΔH = ? 1. CO(g) + H2(g)  C(coal) + H2O(g) ΔH = −131 kJ/mol 2. C(graphite) + 2 H2(g)  CH4(g) ΔH = −74.8 kJ/mol 3. CO(g) + 3 H2(g)  CH4(g) + H2O(g) ΔH = −206 kJ/mol 4. CO(g) + H2O(g)  CO2(g) + H2(g) ΔH = −41...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l)...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l) + O2(g) → HCOOH(l) + H2O(l) ΔH°=-473.0 kJ C(s) + 2H2(g) + 1/2O2(g) → CH3OH(l) ΔH°=-238.0 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH°=-286.0 kJ calculate ΔH° for the reaction: HCOOH(l) + CH3OH(l) → CH3OCHO(l) + H2O(l)
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g) +436 O2(g)⟶2O(g) +495 H2+12O2(g)⟶H2O(g) −242 Part A...
Given the following reactions and their enthalpies: ΔH(kJ/mol)−−−−−−−−−−− H2(g)⟶2H(g) +436 O2(g)⟶2O(g) +495 H2+12O2(g)⟶H2O(g) −242 Part A Devise a way to calculate ΔH for the reaction H2O(g)⟶2H(g)+O(g)
Part 1: You wish to determine ΔH of the following reaction. CS2(ℓ) + 3O2(g) ---> CO2(g)...
Part 1: You wish to determine ΔH of the following reaction. CS2(ℓ) + 3O2(g) ---> CO2(g) + 2SO2(g) Previous research indicates the following ΔH reaction values: C(s) + O2(g) ---> CO2(g) ΔH = -393.5 kJ/mol S(s) + O2(g) ---> SO2(g) ΔH = -296.8 kJ/mol C(s) + 2S(s) ---> CS2(ℓ) ΔH = +87.9 kJ/mol In order to match the coefficients in the desired reaction, which transformation(s) will you do to the reaction forming CO2? And how will ΔH change? A) Flip,...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l ΔH∘=−3120.8kJ
Given the data 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH = −790 kJ S(s)...
Given the data 2 S(s) + 3 O2(g) → 2 SO3(g) ΔH = −790 kJ S(s) + O2(g) → SO2(g) ΔH = −297 kJ SO3(g) + H2O(l) → H2SO4(l) ΔH = −132 kJ use Hess's law to calculate ΔH for the reaction 2 SO2(g) + O2(g) → 2 SO3(g).
Find the ΔH and ΔE for the reaction below: C2H6(g) + 7/2 O2(g) à 2 CO2(g)...
Find the ΔH and ΔE for the reaction below: C2H6(g) + 7/2 O2(g) à 2 CO2(g) + 3 H2O (l) given the following data: ΔHf C2H6 = -84.7 kJ/mol                  ΔHf CO2 = -393.5 kJ/mol ΔHf H2O = -286 kJ/mol
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction...
We can use Hess's law to calculate enthalpy changes that cannot be measured. One such reaction is the conversion of methane to ethylene: 2CH4(g)⟶C2H4(g)+2H2(g) Part A Calculate the ΔH∘ for this reaction using the following thermochemical data: CH4(g)+2O2(g)⟶CO2(g)+2H2O(l) ΔH∘=−890.3kJ C2H4(g)+H2(g)⟶C2H6(g) ΔH∘=−136.3kJ 2H2(g)+O2(g)⟶2H2O(l) ΔH∘=−571.6kJ 2C2H6(g)+7O2(g)⟶4CO2(g)+6H2O(l) ΔH∘=−3120.8kJ Express your answer to four significant figures and include the appropriate units.