Question

1. At constant volume, the heat of combustion of a particular compound, compound A, is –3409.0...

1. At constant volume, the heat of combustion of a particular compound, compound A, is –3409.0 kJ/mol. When 1.277 g of compound A (molar mass = 117.77 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.891 °C. Using this data, what is the heat capacity (calorimeter constant) of the calorimeter?

2. Suppose a 3.107 g sample of a second compound, compound B, was combusted in the same calorimeter, and the temperature rose from 24.37 °C to 30.30 °C. What is the heat of combustion per gram of compound B?

Homework Answers

Answer #1

Solution- Mass of compound A= 1.277g

Moles of compound A=Mass/molar mass=1.277/117.77 =0.01084 mol
So,
Heat released in reaction=Moles of compound*heat of combustion

                                =0.01084*3409.0 =36.95 kJ

Let C be the heat capacity of calorimeter be.

So,

C*change in temperature=Heat released in reaction

C*6.891=36.95

Calorimeter constant, C=5.36 kJ/C

…………………………………………………………………………….

Let us suppose heat of combustion be Δh
So,
Mass*Δh=Calorimeter constant*Change in temperature

3.107*Δh=5.36*(30.30-24.37)

Δh=10.23 kJ/g

= -10.23 kJ/g Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At constant volume, the heat of combustion of a particular compound is –3146.0 kJ/mol. When 1.159...
At constant volume, the heat of combustion of a particular compound is –3146.0 kJ/mol. When 1.159 g of this compound (molar mass = 157.13 g/mol) was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 6.565 °C. What is the heat capacity (calorimeter constant) of the calorimeter?
Under constant-volume conditions the heat of combustion of benzoic acid (HC7H5O2) is 26.38 kJ/g. A 1.670...
Under constant-volume conditions the heat of combustion of benzoic acid (HC7H5O2) is 26.38 kJ/g. A 1.670 g sample of benzoic acid is burned in a bomb calorimeter. The temperature of the calorimeter increases from 22.45 degrees Celsius to 27.60 degrees Celsius. A) what is the total heat capacity of the calorimeter? B) 1.390 g sample of new sample organic substance is combusted in the same calorimeter. The temperature of the calorimeter increases from 22.14 degrees Celsius to 26.82 degrees Celsius....
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by...
When 2.25mg of anthracene was combusted in a constant volume bomb calorimeter, the temperature rose by 1.35K. Given that the standard molar enthalpy of combustion of anthracene at 298K is -7061 kJ/mol, calculate the heat capacity of the calorimeter.
The heat of combustion of benzoic acid (C6H5COOH) is -3226 kJ/mol. When 0.841 g of benzoic...
The heat of combustion of benzoic acid (C6H5COOH) is -3226 kJ/mol. When 0.841 g of benzoic acid was burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose from 23.50 °C to 27.05 °C. What is the heat capacity (calorimeter constant) of the calorimeter? A.6.25 kJ/°C B.22.2 kJ/°C C.79.0 kJ/°C D.0.439 kJ/°C E.908 kJ/°C
A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently,...
A quantity of 1.922 g of methanol (CH3OH) was burned in a constant-volume bomb calorimeter. Consequently, the temperature rose by 5.56°C. If the heat capacity of the bomb plus water was 8.09 kJ / °C, calculate the molar heat of combustion of methanol.
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic...
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic acid, C6H5COOH, was observed to cause the temperature in the calorimeter to rise from 25.000 to (2.87000x10^1) oC. The energy of combustion of benzoic acid, ΔU, is -3226.7 kJ mol-1. What is total heat capacity (C) of the calorimeter (including all its contents) in kJ oC-1?
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...