Question

0.100 moles of He are contained in a piston at equilibrium under an external pressure of...

0.100 moles of He are contained in a piston at equilibrium under an external pressure of 2.80 atm at 298 K. The external pressure if reduced to 1.20 atm and the piston is allowed to expand and return to equilibrium, at the same temperature. How much work is done by the system? Assume the gas is ideal.

Homework Answers

Answer #1

Work done by the system = - external pressure x change in volume

external pressure = 1.2 atm

Initial volume has to be calculeted from ideal gas equation

pressure x volume1 = number of moles x gas constant x temperature

2.8 x volume1 = 1 x 0.082057 x 298

volume 1 = 8.733 L

Similarly the volume 2 at pressure 1.2 atm

pressure x volume2 = number of moles x gas constant x temperature

1.2 x volume2 = 1 x 0.082057 x 298

volume 2 = 20.337 L

change in volume = 11.644 L

work done = - 11.644 x 1.2 = -11.973 L-atm

1 L-atm = 101.325 J

Thus work done = -1213.16 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The reversible, gas-phase reaction, 2A->B is in equilibrium in a piston-cylinder at 3.5-bar pressure. At equilibrium,...
The reversible, gas-phase reaction, 2A->B is in equilibrium in a piston-cylinder at 3.5-bar pressure. At equilibrium, the system contains 2.0 mol A and 3.0 mol B. When 5.0 mol of an inert gas are added to the system, how many moles of B are present at equilibrium? The pressure and temperature do not change. Assume ideal gases.
A quantity of air is contained in a cylinder provided with a movable piston. Initially the...
A quantity of air is contained in a cylinder provided with a movable piston. Initially the pressure of the air is 4 × 107 N/m2 , the volume is 1.5 m3 and the temperature is 400 K. Assume air is an ideal gas. (a) What are the final volume and temperature of the air if it is allowed to expand isothermally from initial conditions until the pressure is 3 × 107 N/m2 and then is cooled at constant volume until...
One gram-mole of ideal gas is contained in a piston-cylinder assembly. Cp=(7/2)R, Cv=(5/2)R. The gas expands...
One gram-mole of ideal gas is contained in a piston-cylinder assembly. Cp=(7/2)R, Cv=(5/2)R. The gas expands from 3 to 1 atm. Heat of 1000J is transferred to the gas during the process. External pressure maintains at 1 atm throughout. Initial temperature of the gas is 300K. Find work and internal energy change.
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in...
10.0 L of an ideal diatomic gas at 2.00 atm and 275 K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure PA = 2.5 atm and volume VA = 0.80 m3. It undergoes the following cyclic process: A -> B: I There is isothermal expansion to volume double of the original. B -> C: Constant-volume process back to its original pressure . C -> A: Constant-pressure process back to its initial state a) Draw a Pressure volume diagram for the cycle. You don't need to...
In a closed container, one gram of water (1 cm3) is boiled under constant pressure of...
In a closed container, one gram of water (1 cm3) is boiled under constant pressure of 1 atm (1.013 × 105 Pa) until it changes into steam. The heat of vaporization at this pressure is Lv = 2.256 × 106 J/kg = 2256 J/g. Assume that water vapor behaves like an ideal gas. The temperature of the steam is 373 K, number of moles of water vapor n = 0.0546 (g mol), the ideal gas constant R = 82.057 (cm3·atm/g...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston compresses a gas isothermally from a height of 15.0 cm to 2.50 cm at a constant pressure of 2.0 atm. a) How much heat was added to the gas? b) Now if 7000 J of heat is added to the system and the piston is only moves 5.0 cm up, what is the change in the internal energy of the system is the pressure...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in...
14.3 10.0 L of an ideal diatomic gas at 2.00 atm and 275K are contained in a cylinder with a piston. The gas first expands isobarically to 20.0 L (step 1). It then cools at constant volume back to 275 K (step 2), and finally contracts isothermally back to 10.0 L (step 3). a) Show the series of processes on a pV diagram. b) Calculate the temperature, pressure, and volume of the system at the end of each step in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT