Question

Describe how the equilibrium of the following reaction would shift, if at all, if the following...

Describe how the equilibrium of the following reaction would shift, if at all, if the following changes were made.

AgNO3 (aq) + KI (aq) ⇌ AgI (s) + KNO3 (aq)

ΔHrxn = – 45.2 kJ/mol

a. Additional AgI (s) is added to the reaction mixture

b. Additional KI is added to the reaction mixture

c. The reaction vessel is cooled down

Homework Answers

Answer #1

According to Lechateliers principle, an increase in concentration of any of the reactant shifts the equilibrium to right and increase in concentration of any of the product shifts the equilibrium to left.

Thus,

a) Additional AgI (s) is added to the reaction mixture - equilibrium shift to left

b) Additional KI is added to the reaction mixture - equilibrium shift to right

c) Since the equilibrium is exothermic in forward direction, a decrease in temperature favours product formattion -- equilibrium shift to right

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the following reaction at equilibrium in a reaction vessel, which one of these changes would...
For the following reaction at equilibrium in a reaction vessel, which one of these changes would cause the I2 concentration to increase? 2NOI(g) ↔ 2NO(g) + I2(g), /\Hºrxn= 30 kJ/mol A. Lower the temperature. B. Remove some NO. C. Remove some NOI. D. Compress the gas mixture into a smaller volume.
Consider the following reaction at equilibrium: C(s)+H2O(g)⇌CO(g)+H2(g) Predict whether the reaction will shift left, shift right,...
Consider the following reaction at equilibrium: C(s)+H2O(g)⇌CO(g)+H2(g) Predict whether the reaction will shift left, shift right, or remain unchanged upon each of the following disturbances. Part A C is added to the reaction mixture. -is added to the reaction mixture. -the reaction will shift left -the reaction will shift right -the reaction will remain unchanged Part B H2O is condensed and removed from the reaction mixture. -is condensed and removed from the reaction mixture. -the reaction will shift left -the...
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift...
Determine how each of the following changes will affect the equilibrium reaction below (shift left, shift right, no change) H2O(g) + C(s) ↔ H2(g) + CO(g) ∆H° = 131 kJ a. increasing the temperature b. adding CO c. removing H2 c. removing H e. increasing the volume of the container f. adding more carbon to the reaction
For the following reaction at equilibrium, which change would shift the position of equilibrium toward forming...
For the following reaction at equilibrium, which change would shift the position of equilibrium toward forming more products? (Select your answer(s) as there may be more than one.)2NOBr(g) 2NO(g) + Br2(g), ∆Hºrxn = +30 kJ/mol A)Decrease the total pressure by increasing the volume. B)Add NO. C)Remove Br2. D)Raise the temperature. E)Add NOBr
Consider the following reaction: AgI(s) ⇌ Ag+(aq)+I-(aq) KI is added to the solution to form AgI(s)....
Consider the following reaction: AgI(s) ⇌ Ag+(aq)+I-(aq) KI is added to the solution to form AgI(s). Write up to 8 correct, distinct and relevant facts about this reaction and any other information given.
How would each of the following changes affect this equilibrium? 2 S(s) + 3 O2(g) ⇌...
How would each of the following changes affect this equilibrium? 2 S(s) + 3 O2(g) ⇌ 2 SO3(g); ΔH = −791.4 kJ/mol (a) increasing the temperature Would it shift the reaction toward the reactants? Would it shift the reaction toward the products? Or, does temp not affect equilibrium? (b) increasing [O2] Does increasing O2 shifts the reaction toward the reactants, shift the reaction toward the products, or does the increasing O2 not affect equilibrium? (c) increasing the volume of the...
For the following chemical system at equilibrium, choose whether the concentration of Zn2+ increases, decreases, or...
For the following chemical system at equilibrium, choose whether the concentration of Zn2+ increases, decreases, or stays the same for each of the below separate changes to the system. (8 points) 16 H+(aq) + 2 MnO4-(aq) + 5 Zn(s) ↔ 2 Mn2+(aq) + 8 H2O(l) + 5 Zn2+(aq) pH is increased by the addition of a strong base Zn solid is added to the reaction mixture Water is added to the reaction mixture. Mn2+ions are added to the reaction mixture...
Consider the following reaction at equilibrium: 2H2(g)+S2(g)⇌2H2S(g)+heat In a 10.0-L container, an equilibrium mixture contains 2.20...
Consider the following reaction at equilibrium: 2H2(g)+S2(g)⇌2H2S(g)+heat In a 10.0-L container, an equilibrium mixture contains 2.20 g of H2, 10.9 g of S2 and 68.1 g of H2S. Part A What is the numerical Kc value for this equilibrium mixture? Part B If more H2 is added to the equlibrium mixture, how will the equilibrium shift? Part C How will the equilibrium shift if the mixture is placed in a 5.00-L container with no change in temperature? Part D If...
1) The following reaction was carried out in a 2.25 L reaction vessel at 1100 K:...
1) The following reaction was carried out in a 2.25 L reaction vessel at 1100 K: C(s)+H2O(g)⇌CO(g)+H2(g) If during the course of the reaction, the vessel is found to contain 8.75 mol of C, 14.1 mol of H2O, 3.60 mol of CO, and 8.50 mol of H2, what is the reaction quotient Q? 2) The following reaction was performed in a sealed vessel at 782 ∘C : H2(g)+I2(g)⇌2HI(g) Initially, only H2 and I2 were present at concentrations of [H2]=3.65M and...
5) (10 pts) For the endothermic reaction below initially at equilibrium, predict the shift in the...
5) (10 pts) For the endothermic reaction below initially at equilibrium, predict the shift in the reaction for each of the following scenarios. C(s) + H2O (g) ⇌ CO (g) + H2 (g) Disturbance Shift (left/right) a. Increase the amount of Water b. Decrease the pressure by half c. Remove C from the reaction d. Add hydrogen to the mixture e. Increase the temperature