Question

If a gas is compressed from 10.0L to 3.0L at constant temperature and 2 atm pressure...

If a gas is compressed from 10.0L to 3.0L at constant temperature and 2 atm pressure and releases 56.5 kJ of heat to the surroundings at the same time, what is ΔE for the gas?

Homework Answers

Answer #1

Work done , W = -P dV

Where P = Pressure = 2 atm x(101325 pas/ atm )

              = 202650 Pas

         dV = (3.0 - 10.0)L = -7.0 L x (10-3 m3/L)

             = -7.0x10-3 m3

So W = 1418.6 J

         = 1.42 kJ

Amount releases to the surroundings is 56.5 kJ

So Q = -56.5 kJ

From first law of thermodynamics ,

ΔE = Q + W

     = -56.5 kJ + 1.42 kJ

     = -55.08 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A container of gas at 2.8 atm pressure and 120∘C is compressed at constant temperature until...
A container of gas at 2.8 atm pressure and 120∘C is compressed at constant temperature until the volume is halved. It is then further compressed at constant pressure until the volume is halved again. 1.) What is the final pressure of the gas?(in atm) 2.)What is the final temperature of the gas?(in celsius)
A gas is compressed at a constant pressure of 0.800 atm from 10.00 L to 3.00...
A gas is compressed at a constant pressure of 0.800 atm from 10.00 L to 3.00 L. In the process, 400 J of energy leaves the gas by heat. (a) What is the work done on the gas? J (b) What is the change in its internal energy? J
One mole of an ideal gas is compressed at a constant temperature of 55 oC from...
One mole of an ideal gas is compressed at a constant temperature of 55 oC from 16.5 L to 12.8 L using a constant external pressure of 1.6 atm. Calculate w, q, ΔH and ΔS for this process. w = (?) kJ q = (?) kJ ΔH = (?) kJ ΔS = (?) J/(mol*K)
A gas is compressed from an initial volume of 5.1 L to a final volume of...
A gas is compressed from an initial volume of 5.1 L to a final volume of 3.4 L under a constant pressure of 1.20 atm. During the compression, the gas releases 86 J of heat. Calculate the change in internal energy and in enthalpy.
A sample of nitrogen gas at a pressure of 0.942 atm and a temperature of 25.1...
A sample of nitrogen gas at a pressure of 0.942 atm and a temperature of 25.1 °C, occupies a volume of 18.5 liters. If the gas is compressed at constant temperature to a volume of 11.0 liters, the pressure of the gas sample will be_________atm. A sample of nitrogen gas at a pressure of 983 mm Hg and a temperature of 80 °C, occupies a volume of 10.1 liters. If the gas is cooled at constant pressure to a temperature...
A gas is compressed from an initial volume of 5.40 L to a final volume of...
A gas is compressed from an initial volume of 5.40 L to a final volume of 1.22 L by an external pressure of 1.00 atm. During the compression the gas releases 120 J of heat. What is the change in internal energy of the gas?
A gas is confined to a cylinder under constant atmospheric pressure, as illustrated in the following...
A gas is confined to a cylinder under constant atmospheric pressure, as illustrated in the following figure. When 0.470 kJ of heat is added to the gas, it expands and does 219 J of work on the surroundings. 1. What is the value of ΔH for this process?Express the energy in kilojoules to three significant digits. 2. What is the value of ΔE for this process? Express the energy in kilojoules to three decimal places.
The gas inside a cylinder expands against a constant external pressure of 0.943 atm from a...
The gas inside a cylinder expands against a constant external pressure of 0.943 atm from a volume of 3.35 L to a volume of 14.40 L. In doing so, it turns a paddle immersed in 0.951 L of liquid octane (C8H18). Calculate the temperature rise of the liquid, assuming no loss of heat to the surroundings or frictional losses in the mechanism. Take the density of liquid C8H18 to be 0.703 g cm-3 and its specific heat to be 2.22...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
An ideal gas initially at 340 K is compressed at a constant pressure of 29 N/m2...
An ideal gas initially at 340 K is compressed at a constant pressure of 29 N/m2 from a volume of 3.3 m3 to a volume of 1.6 m3. In the process, 74 J is lost by the gas as heat. What are (a) the change in internal energy of the gas and (b) the final temperature of the gas?