Question

A 97.2 mL sample of 1.00 M NaOH is mixed with 48.6 mL of 1.00 M...

A 97.2 mL sample of 1.00 M NaOH is mixed with 48.6 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 23.05 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.50 °C. Assume that the density of the mixed solutions is 1.00 g/mL, that the specific heat of the mixed solutions is 4.18 J/(g·°C), and that no heat is lost to the surroundings.

Part 1

Write a balanced chemical equation for the reaction that takes place in the Styrofoam cup. Remember to include phases in the balanced chemical equation.

Part 2

Calculate the enthalpy change per mole of H2SO4 in the reaction.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 21.05 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M...
A 90.2 mL sample of 1.00 M NaOH is mixed with 45.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 21.45 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 30.90 °C. Assume that the density of the mixed solutions is 1.00...
A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M...
A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.25 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 30.90 °C. Assume that the density of the mixed solutions is 1.00...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M...
A 100.0 ml sample of 1.00 M NaOH is mixed with 50.0 ml of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. the temperature of each solution before mixing is 22.5°C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with thermometer; the maximum temperature measured is 32.1 C. Assume that the density of the mixed solutions is 1.00 g/ml that...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.45 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...
A 100 mL sample of 0.300 M NaOH is mixed with a 100 mL sample of...
A 100 mL sample of 0.300 M NaOH is mixed with a 100 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. The two substances react according to the following chemical equation: NaOH(aq) + HNO3(aq) → NaNO3(aq) + H2O(l) Both solutions were initially at 35.0 °C. The temperature of the solution after reaction was 37.0 °C. Estimate the ΔHrxn (in kJ/mol NaOH). Assume: i) no heat is lost to the calorimeter or the surroundings; and ii) the density...
A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample of...
A 50.0 mL sample of 0.300 M NaOH is mixed with a 50.0 mL sample of 0.300 M HNO3 in a coffee cup calorimeter. If both solutions were initially at 35.00°C and the temperature of the resulting solution was recorded as 37.00°C, determine the ΔH°rxn (in units of kJ/mol NaOH) for the neutralization reaction between aqueous NaOH and HCl. Assume 1) that no heat is lost to the calorimeter or the surroundings, and 2) that the density and the heat...
100.0 mL of 0.800 M aqueous NaOH and 50.00 mL of 0.800 M aqueous H2SO4, each...
100.0 mL of 0.800 M aqueous NaOH and 50.00 mL of 0.800 M aqueous H2SO4, each at 24.0°C, were mixed, see equation: 2NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + 2H2O(l) The final temperature achieved by the solution was 29.3 °C. Neglect the heat capacity of the cup and the thermometer, and assume that the solution of products has a density of exactly 1.00 g/mL and a specific heat capacity of 4.18 J/(g•K).     How much heat was absorbed by the water?
10. In an effort to calculate the heat of neutralization of an acid, a student mixed...
10. In an effort to calculate the heat of neutralization of an acid, a student mixed 50.0 mL of 1.0 M H2SO4 with 100 mL of 1.0 M NaOH in a calorimeter and observes the temperature change. Write the balanced chemical equation for this reaction. If the initial temperature of the acid and base was 20.1 °C and the temperature rose to 23.7 °C after mixing the two, what is the heat of neutralization for H2SO4? Assume that the solutions...
1) A student reacts 25.0 mL of 0.225 M NaOH with 25.0 mL of 0.147 M...
1) A student reacts 25.0 mL of 0.225 M NaOH with 25.0 mL of 0.147 M H2SO4. Write a balanced chemical equation to show this reaction. Calculate the concentrations of NaOH and H2SO4 that remain in solution, as well as the concentration of the salt that is formed during the reaction. 2) A student reacts 45.0 mL of 0.198 M Ba(OH)2 with 50.0 mL of 0.102 M H3PO4. Write a balanced chemical equation to show this reaction. Note that the...